Mechanical test data of quartz sand, garnet sand, gypsum powder (plaster), kaolin and sand-plaster mixtures used as granular analogue materials in geoscience laboratory experiments

Poppe, Sam; Holohan, Eoghan P.; Rudolf, Michael; Rosenau, Matthias; Galland, Olivier; Delcamp, Audray; Van Gompel, Gert; Buls, Nico; Soens, Bastien; Pohlenz, Andre; Mourgues, Régis; Kervyn, Matthieu;

2021 || GFZ Data Services

This dataset provides mechanical test data for quartz sand (“MAM1ST-300”, Sibelco, Mol, Belgium), gypsum powder (plaster; “Goldband”, Knauf), kaolin clay powder, garnet sand, and mixtures of quartz sand and gypsum powder, used at the Analogue Laboratory of the Department of Geography at the Vrije Universiteit Brussel, Brussels, Belgium, for simulating brittle rocks in the upper crust (Poppe et al., 2019). The measured properties are density ρ, tensile strength T0, shear strength σ, obtained by density measurements, ring-shear tests (RST; at Helmholtz Centre Potsdam GFZ, Germany), direct shear tests, traction tests (at University of Maine, Le Mans, France) and extension tests. The obtained tensile strengths and shear strengths reconstruct two-dimensional failure envelopes for each material. By fitting linear Coulomb and non-linear combined Griffith failure criteria to the characterised failure envelopes (Jaeger et al., 2007), the internal friction coefficient µC, Coulomb cohesion CC and Griffith cohesion CG are obtained. The influence of the material emplacement technique has been investigated in Poppe et al. (2021) to which this data set is supplementary, by repeat characterisation of the above physical parameters under three emplacement conditions, i.e. sieving, pouring (non-dried state) and compaction after pouring (oven-dried state).

We find that densities of the materials and mixtures range from ~1600 kg.m³ (sieved) and ~1700 kg.m³ (compacted) for pure quartz sand to ~600 kg.m³ (poured) to ~900 kg.m³ (compacted) for pure plaster. Tensile strengths range from ~166 Pa (sand) to ~425 Pa (plaster). Velocity ring-shear tests on a 90 wt% quartz sand – 10 wt% plaster mixture show a minor shear rate-weakening of <2% per ten-fold increase in shear velocity. The materials show a behavior ranging from Mohr-Coulomb behavior for the materials with coarser grain size (sands) to combined Griffith-Mohr-Coulomb behavior for the powder materials (plaster, kaolin), with the sand-plaster mixtures occupying a spectrum between both end-members. Peak friction coefficients range from ~0.5 (sand) to ~0.6 (plaster) with a maximum of ~0.9 (80:20 wt% sand:plaster), peak Coulomb cohesions range from 13 Pa (sand) to 248 Pa (plaster), peak Griffith cohesions range from ~10 Pa (sand) to ~425 Pa (plaster).

Originally assigned keywords

Corresponding MSL vocabulary keywords

MSL enriched keywords

MSL enriched sub domains
  • rock and melt physics
  • analogue modelling of geologic processes
  • geochemistry
  • microscopy and tomography
Source http://dx.doi.org/10.5880/fidgeo.2021.005
Source publisher GFZ Data Services
DOI 10.5880/fidgeo.2021.005
Authors
  • Poppe, Sam
  • 0000-0002-8787-8590
  • Physical Geography, Department of Geography, Vrije Universiteit Brussel, Belgium; Laboratoire G-Time, Department of Geosciences, the Environment and Society, Université Libre de Bruxelles, Brussels, Belgium;

  • Holohan, Eoghan P.
  • 0000-0002-5930-6712
  • UCD School of Earth Sciences, University College of Dublin, Ireland;

  • Rudolf, Michael
  • 0000-0002-5077-5221
  • GFZ German Research Centre for Geosciences, Potsdam, Germany;

  • Rosenau, Matthias
  • 0000-0003-1134-5381
  • GFZ German Research Centre for Geosciences, Potsdam, Germany;

  • Galland, Olivier
  • 0000-0002-8087-428X
  • Physics of Geological Processes, Njord Center, University of Oslo, Norway ;

  • Delcamp, Audray
  • 0000-0001-8249-8575
  • Physical Geography, Department of Geography, Vrije Universiteit Brussel, Belgium;

  • Van Gompel, Gert
  • 0000-0002-9380-7756
  • Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Belgium;

  • Buls, Nico
  • 0000-0003-2830-6899
  • Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Belgium;

  • Soens, Bastien
  • 0000-0002-7695-6629
  • Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Belgium ; Laboratoire G-Time, Department of Geosciences, the Environment and Society, Université Libre de Bruxelles, Brussels, Belgium;

  • Pohlenz, Andre
  • GFZ German Research Centre for Geosciences, Potsdam, Germany;

  • Mourgues, Régis
  • Géosciences Le Mans, Le Mans Université, France;

  • Kervyn, Matthieu
  • 0000-0002-4966-3468
  • Physical Geography, Department of Geography, Vrije Universiteit Brussel, Belgium;
Contributors
  • Poppe, Sam
  • ContactPerson
  • 0000-0002-8787-8590
  • Physical Geography, Department of Geography, Vrije Universiteit Brussel, Belgium; Laboratoire G-Time, Department of Geosciences, the Environment and Society, Université Libre de Bruxelles, Brussels, Belgium;

  • Poppe, Sam
  • DataCollector
  • 0000-0002-8787-8590
  • Physical Geography, Department of Geography, Vrije Universiteit Brussel, Belgium; Laboratoire G-Time, Department of Geosciences, the Environment and Society, Université Libre de Bruxelles, Brussels, Belgium;

  • Holohan, Eoghan P.
  • Supervisor
  • 0000-0002-5930-6712
  • UCD School of Earth Sciences, University College of Dublin, Ireland;

  • Rudolf, Michael
  • DataCollector
  • 0000-0002-5077-5221
  • GFZ German Research Centre for Geosciences, Potsdam, Germany;

  • Rosenau, Matthias
  • Supervisor
  • 0000-0003-1134-5381
  • GFZ German Research Centre for Geosciences, Potsdam, Germany;

  • Galland, Olivier
  • RelatedPerson
  • 0000-0002-8087-428X
  • Physics of Geological Processes, Njord Center, University of Oslo, Norway ;

  • Delcamp, Audray
  • RelatedPerson
  • 0000-0001-8249-8575
  • Physical Geography, Department of Geography, Vrije Universiteit Brussel, Belgium;

  • Van Gompel, Gert
  • DataCollector
  • 0000-0002-9380-7756
  • Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Belgium;

  • Buls, Nico
  • DataCollector
  • 0000-0003-2830-6899
  • Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Belgium;

  • Soens, Bastien
  • DataCollector
  • 0000-0002-7695-6629
  • Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Belgium ; Laboratoire G-Time, Department of Geosciences, the Environment and Society, Université Libre de Bruxelles, Brussels, Belgium;

  • Pohlenz, Andre
  • DataCollector
  • GFZ German Research Centre for Geosciences, Potsdam, Germany;

  • Mourgues, Régis
  • RelatedPerson
  • Géosciences Le Mans, Le Mans Université, France;

  • Kervyn, Matthieu
  • Supervisor
  • 0000-0002-4966-3468
  • Physical Geography, Department of Geography, Vrije Universiteit Brussel, Belgium;

  • Poppe, Sam
  • ContactPerson
  • Laboratoire G-Time, Department of Geosciences, the Environment and Society, Université Libre de Bruxelles, Brussels, Belgium;
References
  • Poppe, S., Holohan, E. P., Rudolf, M., Rosenau, M., Galland, O., Delcamp, A., & Kervyn, M. (2022). Mechanical properties of quartz sand and gypsum powder (plaster) mixtures: implications for laboratory model analogues for the Earth’s upper crust. https://doi.org/10.31223/x58c93
  • 10.31223/X58C93
  • IsSupplementTo

  • Grosse, P., Poppe, S., Delcamp, A., van Wyk de Vries, B., & Kervyn, M. (2020). Volcano growth versus deformation by strike-slip faults: Morphometric characterization through analogue modelling. Tectonophysics, 781, 228411. https://doi.org/10.1016/j.tecto.2020.228411
  • 10.1016/j.tecto.2020.228411
  • IsSupplementTo

  • Poppe, S., Holohan, E. P., Galland, O., Buls, N., Van Gompel, G., Keelson, B., Tournigand, P.-Y., Brancart, J., Hollis, D., Nila, A., & Kervyn, M. (2019). An Inside Perspective on Magma Intrusion: Quantifying 3D Displacement and Strain in Laboratory Experiments by Dynamic X-Ray Computed Tomography. Frontiers in Earth Science, 7. https://doi.org/10.3389/feart.2019.00062
  • 10.3389/feart.2019.00062
  • IsSupplementTo

  • Abdelmalak, M. M., Bulois, C., Mourgues, R., Galland, O., Legland, J.-B., & Gruber, C. (2016). Description of new dry granular materials of variable cohesion and friction coefficient: Implications for laboratory modeling of the brittle crust. Tectonophysics, 684, 39–51. https://doi.org/10.1016/j.tecto.2016.03.003
  • 10.1016/j.tecto.2016.03.003
  • Cites

  • Adam, J., Klinkmüller, M., Schreurs, G., & Wieneke, B. (2013). Quantitative 3D strain analysis in analogue experiments simulating tectonic deformation: Integration of X-ray computed tomography and digital volume correlation techniques. Journal of Structural Geology, 55, 127–149. https://doi.org/10.1016/j.jsg.2013.07.011
  • 10.1016/j.jsg.2013.07.011
  • Cites

  • Colletta, B., Letouzey, J., Pinedo, R., Ballard, J. F., & Balé, P. (1991). Computerized X-ray tomography analysis of sandbox models: Examples of thin-skinned thrust systems. Geology, 19(11), 1063. https://doi.org/10.1130/0091-7613(1991)019<1063:cxrtao>2.3.co;2
  • 10.1130/0091-7613(1991)019<1063:cxrtao>2.3.co;2
  • Cites

  • Galland, O., Cobbold, P. R., Hallot, E., de Bremond d’Ars, J., & Delavaud, G. (2006). Use of vegetable oil and silica powder for scale modelling of magmatic intrusion in a deforming brittle crust. Earth and Planetary Science Letters, 243(3–4), 786–804. https://doi.org/10.1016/j.epsl.2006.01.014
  • 10.1016/j.epsl.2006.01.014
  • Cites

  • Klinkmüller, M., Schreurs, G., Rosenau, M., & Kemnitz, H. (2016). Properties of granular analogue model materials: A community wide survey. Tectonophysics, 684, 23–38. https://doi.org/10.1016/j.tecto.2016.01.017
  • 10.1016/j.tecto.2016.01.017
  • Cites

  • Lohrmann, J., Kukowski, N., Adam, J., & Oncken, O. (2003). The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges. Journal of Structural Geology, 25(10), 1691–1711. https://doi.org/10.1016/s0191-8141(03)00005-1
  • 10.1016/S0191-8141(03)00005-1
  • Cites

  • Mourgues, R., & Cobbold, P. R. (2003). Some tectonic consequences of fluid overpressures and seepage forces as demonstrated by sandbox modelling. Tectonophysics, 376(1–2), 75–97. https://doi.org/10.1016/s0040-1951(03)00348-2
  • 10.1016/S0040-1951(03)00348-2
  • Cites

  • Panien, M., Schreurs, G., & Pfiffner, A. (2006). Mechanical behaviour of granular materials used in analogue modelling: insights from grain characterisation, ring-shear tests and analogue experiments. Journal of Structural Geology, 28(9), 1710–1724. https://doi.org/10.1016/j.jsg.2006.05.004
  • 10.1016/j.jsg.2006.05.004
  • Cites

  • Ritter, M. C., Leever, K., Rosenau, M., & Oncken, O. (2016). Scaling the sandbox—Mechanical (dis) similarities of granular materials and brittle rock. Journal of Geophysical Research: Solid Earth, 121(9), 6863–6879. Portico. https://doi.org/10.1002/2016jb012915
  • 10.1002/2016JB012915
  • Cites

  • Ritter, M. C., Rosenau, M., & Oncken, O. (2018). Growing Faults in the Lab: Insights Into the Scale Dependence of the Fault Zone Evolution Process. Tectonics, 37(1), 140–153. Portico. https://doi.org/10.1002/2017tc004787
  • 10.1002/2017TC004787
  • Cites

  • Rudolf, M., & Warsitzka, M. (2021). RST Evaluation - Scripts for analysing shear experiments from the Schulze RST.pc01 ring shear tester. GFZ Data Services. https://doi.org/10.5880/GFZ.4.1.2021.001
  • 10.5880/GFZ.4.1.2021.001
  • Cites

  • van Gent, H. W., Holland, M., Urai, J. L., & Loosveld, R. (2010). Evolution of fault zones in carbonates with mechanical stratigraphy – Insights from scale models using layered cohesive powder. Journal of Structural Geology, 32(9), 1375–1391. https://doi.org/10.1016/j.jsg.2009.05.006
  • 10.1016/j.jsg.2009.05.006
  • Cites

  • Warsitzka, M., Ge, Z., Schönebeck, J.-M., Pohlenz, A., & Kukowski, N. (2019). Ring-shear test data of foam glass beads used for analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam and the Institute of Geosciences, Friedrich Schiller University Jena [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.1.2019.002
  • 10.5880/GFZ.4.1.2019.002
  • Cites
Contact
  • Poppe, Sam
  • Laboratoire G-Time, Department of Geosciences, the Environment and Society, Université Libre de Bruxelles, Brussels, Belgium;

  • Poppe, Sam
  • Laboratoire G-Time, Department of Geosciences, the Environment and Society, Université Libre de Bruxelles, Brussels, Belgium;
Citation Poppe, S., Holohan, E. P., Rudolf, M., Rosenau, M., Galland, O., Delcamp, A., Van Gompel, G., Buls, N., Soens, B., Pohlenz, A., Mourgues, R., & Kervyn, M. (2021). Mechanical test data of quartz sand, garnet sand, gypsum powder (plaster), kaolin and sand-plaster mixtures used as granular analogue materials in geoscience laboratory experiments [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2021.005