Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

In-situ Raman spectra from Na2ATP solutions with starting pH 3 and 7 at 80,100 and 120 °C for determination of the hydrolysis rate constant of ATP

Moeller, Christoph | Schmidt, Christian | Guyout, Francois | Wilke, Max

GFZ Data Services

(2024)

Extremophiles maintain an active metabolism up to 122 °C (Takai et al. 2008). These extreme conditions are found, for example in hot springs, in deep oceanic and crustal sediments and in hydrothermal vents at mid-oceanic spreading ridges (Edwards et al., 2011; Heuer et al., 2020). Several studies have investigated the diversity of microorganisms and their relationship to the geological environment as well as to responses to changes. However, the physicochemical parameters necessary to sustain metabolism under these conditions, including the stability of essential molecular compounds like adenosine triphosphate (ATP) and adenosine diphosphate (ADP) have been only studied marginally. Adenosine triphosphate and adenosine diphosphate are essential energy stores in all currently known metabolic systems. In living cells, the energy is released by the enzymatically controlled exergonic hydrolysis of ATP to power other vital endergonic processes. The abiotic hydrolysis of ATP is kinetically enhanced at elevated temperatures and low pH values resulting in a very short lifetime of ATP and ADP in aqueous solutions (Hulett 1970; Khan and Mohan 1974; Leibrock et al. 1995). Therefore, the kinetic stability of ATP plays a crucial role in metabolism at extreme temperatures. This aspect has been proposed as a critical factor in determining the limits of living cells (Bains et al. 2015). This data publication compromises all Raman spectra obtained for solutions of Na2ATP with an initial pH of 3 and 7 at 80 °C, 100 °C and 120 °C and for solutions of Na2ADP with initial pH 5 at 100 °C and 120 °C. A hydrothermal diamond anvil cell (HDAC) coupled to a Raman spectrometer was used for in-situ measurements. Pressure was estimated from the vapor-liquid curve of water. In addition to the Raman spectra, the following data are provided: an assignment of peaks in the fitted spectral range, the initial fit parameters, and the fit results.

Keywords


Originally assigned keywords
ATP
ADP
AMP
Adenosine triphosphate
Adenosine diiphosphate
Adenosine monophosphate
Metabolite
Hydrolysis
Kinetics
Insitu Raman spectroscopy
Hydrothermal diamond anvil cell
High temperature biochemistry
Raman spectra
HDAC
metabolite
reaction kinetics
HYDROTHERMAL VENTS

MSL enriched keywords
measured property
pH
Technique
chemical and mineralogical analysis
Raman spectrometry - chemistry and mineralogy
crystal structure analysis
Raman spectrometry - crystal lattice
minerals
chemical elements
carbon
diamond
Apparatus
deformation testing
compression testing
diamond anvil cell
Earth's structure
Earth crust

MSL enriched sub domains i

geochemistry
microscopy and tomography
rock and melt physics


Source publisher

GFZ Data Services


DOI

10.5880/fidgeo.2024.025


Authors

Moeller, Christoph

0000-0001-7824-8004

Institute of Geosciences, University of Potsdam, Potsdam, Germany;

Schmidt, Christian

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Guyout, Francois

0000-0003-4622-2218

IMPMC Muséum National d'Histoire Naturelle, Paris, France;

Wilke, Max

0000-0002-1890-3940

Institute of Geosciences, University of Potsdam, Potsdam, Germany;


Contributers

Moeller, Christoph

DataCollector

0000-0001-7824-8004

Institute of Geosciences, University of Potsdam, Potsdam, Germany;

Moeller, Christoph

DataCurator

0000-0001-7824-8004

Institute of Geosciences, University of Potsdam, Potsdam, Germany;

Moeller, Christoph

DataManager

0000-0001-7824-8004

Institute of Geosciences, University of Potsdam, Potsdam, Germany;

Moeller, Christoph

Researcher

0000-0001-7824-8004

Institute of Geosciences, University of Potsdam, Potsdam, Germany;

Schmidt, Christian

DataCollector

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Schmidt, Christian

Researcher

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Guyout, Francois

ProjectMember

0000-0003-4622-2218

IMPMC Muséum National d'Histoire Naturelle, Paris, France;

Guyout, Francois

Researcher

0000-0003-4622-2218

IMPMC Muséum National d'Histoire Naturelle, Paris, France;

Wilke, Max

ProjectManager

0000-0002-1890-3940

Institute of Geosciences, University of Potsdam, Potsdam, Germany;

Wilke, Max

Researcher

0000-0002-1890-3940

Institute of Geosciences, University of Potsdam, Potsdam, Germany;

Hydrothermal Diamond-Anvil Cell Laboratory

HostingInstitution

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Moeller, Christoph

ContactPerson

Institute of Geosciences, University of Potsdam, Potsdam, Germany;


References

Moeller, C., Schmidt, C., Guyot, F., & Wilke, M. (2022). Hydrolysis rate constants of ATP determined in situ at elevated temperatures. Biophysical Chemistry, 290, 106878. https://doi.org/10.1016/j.bpc.2022.106878

10.1016/j.bpc.2022.106878

IsSupplementTo

Bains, W., Xiao, Y., & Yu, C. (2015). Prediction of the Maximum Temperature for Life Based on the Stability of Metabolites to Decomposition in Water. Life, 5(2), 1054–1100. https://doi.org/10.3390/life5021054

10.3390/life5021054

Cites

Bassett, W. A., Shen, A. H., Bucknum, M., & Chou, I.-M. (1993). Hydrothermal studies in a new diamond anvil cell up to 10 GPa and from −190°C to 1200°C. Pure and Applied Geophysics, 141(2–4), 487–495. https://doi.org/10.1007/bf00998341

10.1007/BF00998341

Cites

Brooker, M. H., Nielsen, O. F., & Praestgaard, E. (1988). Assessment of correction procedures for reduction of Raman spectra. Journal of Raman Spectroscopy, 19(2), 71–78. Portico. https://doi.org/10.1002/jrs.1250190202

10.1002/jrs.1250190202

Cites

Edwards, K. J., Wheat, C. G., & Sylvan, J. B. (2011). Under the sea: microbial life in volcanic oceanic crust. Nature Reviews Microbiology, 9(10), 703–712. https://doi.org/10.1038/nrmicro2647

10.1038/nrmicro2647

Cites

Eysel, H. H., & Lim, K. T. (1988). Raman intensities of phosphate and diphosphate ions in aqueous solution. Journal of Raman Spectroscopy, 19(8), 535–539. Portico. https://doi.org/10.1002/jrs.1250190807

10.1002/jrs.1250190807

Cites

Heuer, V. B., Inagaki, F., Morono, Y., Kubo, Y., Spivack, A. J., Viehweger, B., Treude, T., Beulig, F., Schubotz, F., Tonai, S., Bowden, S. A., Cramm, M., Henkel, S., Hirose, T., Homola, K., Hoshino, T., Ijiri, A., Imachi, H., Kamiya, N., … Hinrichs, K.-U. (2020). Temperature limits to deep subseafloor life in the Nankai Trough subduction zone. Science, 370(6521), 1230–1234. https://doi.org/10.1126/science.abd7934

10.1126/science.abd7934

Cites

HULETT, H. R. (1970). Non-enzymatic Hydrolysis of Adenosine Phosphates. Nature, 225(5239), 1248–1249. https://doi.org/10.1038/2251248a0

10.1038/2251248a0

Cites

Leibrock, E., Bayer, P., & Lüdemann, H.-D. (1995). Nonenzymatic hydrolysis of adenosinetriphosphate (ATP) at high temperatures and high pressures. Biophysical Chemistry, 54(2), 175–180. https://doi.org/10.1016/0301-4622(94)00134-6

10.1016/0301-4622(94)00134-6

Cites

Marshall, W. L., & Begun, G. M. (1989). Raman spectroscopy of aqueous phosphate solutions at temperatures up to 450 °C. Two liquid phases, supercritical fluids, and pyro- to ortho-phosphate conversions. J. Chem. Soc., Faraday Trans. 2, 85(12), 1963–1978. https://doi.org/10.1039/f29898501963

10.1039/F29898501963

Cites

Mathlouthi, M., Seuvre, A.-M., & Koenig, J. L. (1984). F.t.-i.r. and laser-Raman spectra of adenine and adenosine. Carbohydrate Research, 131(1), 1–15. https://doi.org/10.1016/0008-6215(84)85398-7

10.1016/0008-6215(84)85398-7

Cites

Preston, C. M., & Adams, W. A. (1979). A laser Raman spectroscopic study of aqueous orthophosphate salts. The Journal of Physical Chemistry, 83(7), 814–821. https://doi.org/10.1021/j100470a011

10.1021/j100470a011

Cites

Rimai, L., Cole, T., Parsons, J. L., Hickmott, J. T., & Carew, E. B. (1969). Studies of Raman Spectra of Water Solutions of Adenosine Tri-, Di-, and Monophosphate and Some Related Compounds. Biophysical Journal, 9(3), 320–329. https://doi.org/10.1016/s0006-3495(69)86389-7

10.1016/S0006-3495(69)86389-7

Cites

Rudolph, W. W. (2010). Raman- and infrared-spectroscopic investigations of dilute aqueous phosphoric acid solutions. Dalton Transactions, 39(40), 9642. https://doi.org/10.1039/c0dt00417k

10.1039/C0DT00417K

Cites

Schmidt, C. (2009). Raman spectroscopic study of a H2O + Na2SO4 solution at 21– 600 °C and 0.1 MPa to 1.1 GPa: Relative differential <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mi>ν</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mtext>-</mml:mtext><mml:mmultiscripts><mml:mrow><mml:mtext>SO</mml:mtext></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow><mml:none /><mml:none /><mml:mrow><mml:mn>2</mml:mn><mml:mo>-</mml:mo></mml:mrow></mml:mmultiscripts></mml:mrow></mml:math> Raman scattering cross sections and evidence of the liquid–liquid transition. Geochimica et Cosmochimica Acta, 73(2), 425–437. https://doi.org/10.1016/j.gca.2008.10.019

10.1016/j.gca.2008.10.019

Cites

Schmidt, C., & Chou, I.-M. (n.d.). The Hydrothermal Diamond Anvil Cell (HDAC) for Raman spectroscopic studies of geological fluids at high pressures and temperatures. Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage, 249–278. https://doi.org/10.1180/emu-notes.12.7

10.1180/EMU-notes.12.7

Cites

Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T., & Horikoshi, K. (2008). Cell proliferation at 122°C and isotopically heavy CH 4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proceedings of the National Academy of Sciences, 105(31), 10949–10954. https://doi.org/10.1073/pnas.0712334105

10.1073/pnas.0712334105

Cites

Taqui Khan, M. M., & Srinivas Mohan, M. (1974). Kinetics of adenosine-5′-triphosphate hydrolysis. Journal of Inorganic and Nuclear Chemistry, 36(3), 707–709. https://doi.org/10.1016/0022-1902(74)80138-7

10.1016/0022-1902(74)80138-7

Cites

Wagner, W., & Pruß, A. (2002). The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Journal of Physical and Chemical Reference Data, 31(2), 387–535. https://doi.org/10.1063/1.1461829

10.1063/1.1461829

Cites


Contact

Moeller, Christoph

Institute of Geosciences, University of Potsdam, Potsdam, Germany;


Citiation

Moeller, C., Schmidt, C., Guyout, F., & Wilke, M. (2024). In-situ Raman spectra from Na2ATP solutions with starting pH 3 and 7 at 80,100 and 120 °C for determination of the hydrolysis rate constant of ATP [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2024.025