Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.
Data Publication
Database of in-situ Raman spectra from N2H2ATP solutions at 80,100 and 120 °C and up to 1666 MPa for determination of the rate constant of the ATP hydrolysis
Moeller, Christoph | Schmidt, Christian | Testemale, Denis | Guyot, François | Kokh, Maria | Wilke, Max
GFZ Data Services
(2023)
In biochemical systems, enzymes catalyze the endergonic phosphorylation of adenosine diphos-phate (ADP) to adenosine triphosphate (ATP) by different pathways, e.g., oxidative phosphoryla-tion catalyzed by membrane bound ATP synthase or substrate-level phosphorylation. The stored energy is released by the enzymatically controlled exergonic hydrolysis of ATP to power other vital endergonic reactions; therefore, ATP is widely known as the universal energy currency. Rapid abiotic ATP hydrolysis kinetics thus means higher maintenance energy costs for cells, and it has been suggested that this is an important factor in setting the limits to the functioning of living organisms (Bains et al. 2015). In order to evaluate the running conditions of the in-situ procedure by Moeller et al. (2022) using Raman spectroscopy opened up an efficient way of obtaining further insights to the effects of P-T- ionic composition on the kinetics of ATP-ADP hy-drolysis. Raman spectroscopy can be combined with a hydrothermal diamond anvil cell, which provides an isochoric system for measurements up to pressures of 2000 MPa. Another system for in-situ Raman spectroscopy at elevated pressures and temperatures is based on an autoclave fitted with optical high-pressure windows, as shown by Louvel et al. (2015) and works up to 200 MPa. In this system, pressure and temperature can be controlled independently, so that isobaric temperature series are possible. This data publication compromises all Raman spectra measured in-situ of N2H2ATP solutions at 80, 100 and 120 °C and up to 1666 MPa to determine the rate constants of the hydrolysis of adenosine triphosphate (ATP) to adenosine diphosphate (ADP) at 48 different P-T conditions. Furthermore, an assignment of peaks in the fitted range, the initial fit parameters and the fit-results are provided. Besides the kinetic data, the pH of the ATP solutions was calculated at ex-perimental temperature and pressure conditions.
Keywords
Originally assigned keywords
MSL enriched keywords
MSL enriched sub domains i
Source publisher
GFZ Data Services
DOI
10.5880/fidgeo.2023.031
Authors
Moeller, Christoph
0000-0001-7824-8004
Institute of Geosciences, University of Potsdam, Potsdam, Germany;
Schmidt, Christian
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Testemale, Denis
Néel Institute, Univ. Grenoble Alpes, Grenoble, France;
Guyot, François
0000-0003-4622-2218
IMPMC Muséum National d'Histoire Naturelle, Paris, France;
Kokh, Maria
0000-0002-0855-015X
Institut für Geowissenschaften, Potsdam, Germany; Institut für Mineralogie, Münster, Germany;
Wilke, Max
0000-0002-1890-3940
Institute of Geosciences, University of Potsdam, Potsdam, Germany;
Contributers
Moeller, Christoph
ContactPerson
0000-0001-7824-8004
Institute of Geosciences, University of Potsdam, Potsdam, Germany;
Moeller, Christoph
DataCollector
0000-0001-7824-8004
Institute of Geosciences, University of Potsdam, Potsdam, Germany;
Schmidt, Christian
DataCollector
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Testemale, Denis
DataCollector
Néel Institute, Univ. Grenoble Alpes, Grenoble, France;
Guyot, François
Researcher
0000-0003-4622-2218
IMPMC Muséum National d'Histoire Naturelle, Paris, France;
Kokh, Maria
DataCollector
0000-0002-0855-015X
Institut für Geowissenschaften, Potsdam, Germany; Institut für Mineralogie, Münster, Germany;
Wilke, Max
Supervisor
0000-0002-1890-3940
Institute of Geosciences, University of Potsdam, Potsdam, Germany;
Hydrothermal Diamond-Anvil Cell Laboratory
HostingInstitution
GFZ German Research Centre for Geosciences, Potsdam, Germany ;
Laboratory Of Fundamental Research In Condensed Matter Physics
HostingInstitution
Néel Institute, Grenoble, France;
Moeller, Christoph
ContactPerson
Institute of Geosciences, University of Potsdam, Potsdam, Germany;
Moeller, Christoph
ContactPerson
Institute of Geosciences, Potsdam, Germany;
References
Moeller, C., Schmidt, C., Testemale, D., Guyot, F., Kokh, M., & Wilke, M. (2024). Hydrolysis rate constants of ATP up to 120 °C and 1.6 GPa: Implications for life at extreme conditions. Geochimica et Cosmochimica Acta, 382, 74–90. https://doi.org/10.1016/j.gca.2024.06.017
10.1016/j.gca.2024.06.017
IsSupplementTo
Bains, W., Xiao, Y., & Yu, C. (2015). Prediction of the Maximum Temperature for Life Based on the Stability of Metabolites to Decomposition in Water. Life, 5(2), 1054–1100. https://doi.org/10.3390/life5021054
10.3390/life5021054
Cites
Bassett, W. A., Shen, A. H., Bucknum, M., & Chou, I.-M. (1993). Hydrothermal studies in a new diamond anvil cell up to 10 GPa and from −190°C to 1200°C. Pure and Applied Geophysics, 141(2–4), 487–495. https://doi.org/10.1007/bf00998341
10.1007/BF00998341
Cites
Bruyère, R., Prat, A., Goujon, C., & Hazemann, J.-L. (2008). A new pressure regulation device using high pressure isolation valves. Journal of Physics: Conference Series, 121(12), 122003. https://doi.org/10.1088/1742-6596/121/12/122003
10.1088/1742-6596/121/12/122003
Cites
Rudolph, W. W. (2010). Raman- and infrared-spectroscopic investigations of dilute aqueous phosphoric acid solutions. Dalton Transactions, 39(40), 9642. https://doi.org/10.1039/c0dt00417k
10.1039/C0DT00417K
Cites
Eysel, H. H., & Lim, K. T. (1988). Raman intensities of phosphate and diphosphate ions in aqueous solution. Journal of Raman Spectroscopy, 19(8), 535–539. Portico. https://doi.org/10.1002/jrs.1250190807
10.1002/jrs.1250190807
Cites
Rimai, L., & Heyde, M. E. (1971). Raman spectroscopic study of the interaction of Ca2+ and Mg2+ with the triphosphate moiety of adenosine triphosphate in aqueous solution. Biochemistry, 10(7), 1121–1128. https://doi.org/10.1021/bi00783a004
10.1021/bi00783a004
Cites
Leibrock, E., Bayer, P., & Lüdemann, H.-D. (1995). Nonenzymatic hydrolysis of adenosinetriphosphate (ATP) at high temperatures and high pressures. Biophysical Chemistry, 54(2), 175–180. https://doi.org/10.1016/0301-4622(94)00134-6
10.1016/0301-4622(94)00134-6
Cites
Kadleı́ková, M., Breza, J., & Veselý, M. (2001). Raman spectra of synthetic sapphire. Microelectronics Journal, 32(12), 955–958. https://doi.org/10.1016/s0026-2692(01)00087-8
10.1016/S0026-2692(01)00087-8
Cites
Louvel, M., Bordage, A., Da Silva-Cadoux, C., Testemale, D., Lahera, E., Del Net, W., Geaymond, O., Dubessy, J., Argoud, R., & Hazemann, J.-L. (2015). A high-pressure high-temperature setup for in situ Raman spectroscopy of supercritical fluids. Journal of Molecular Liquids, 205, 54–60. https://doi.org/10.1016/j.molliq.2014.09.032
10.1016/j.molliq.2014.09.032
Cites
Marshall, W. L., & Begun, G. M. (1989). Raman spectroscopy of aqueous phosphate solutions at temperatures up to 450 °C. Two liquid phases, supercritical fluids, and pyro- to ortho-phosphate conversions. J. Chem. Soc., Faraday Trans. 2, 85(12), 1963–1978. https://doi.org/10.1039/f29898501963
10.1039/F29898501963
Cites
Mathlouthi, M., Seuvre, A.-M., & Koenig, J. L. (1984). F.t.-i.r. and laser-Raman spectra of adenine and adenosine. Carbohydrate Research, 131(1), 1–15. https://doi.org/10.1016/0008-6215(84)85398-7
10.1016/0008-6215(84)85398-7
Cites
Moeller, C., Schmidt, C., Guyot, F., & Wilke, M. (2022). Hydrolysis rate constants of ATP determined in situ at elevated temperatures. Biophysical Chemistry, 290, 106878. https://doi.org/10.1016/j.bpc.2022.106878
10.1016/j.bpc.2022.106878
Cites
Preston, C. M., & Adams, W. A. (1979). A laser Raman spectroscopic study of aqueous orthophosphate salts. The Journal of Physical Chemistry, 83(7), 814–821. https://doi.org/10.1021/j100470a011
10.1021/j100470a011
Cites
Rimai, L., Cole, T., Parsons, J. L., Hickmott, J. T., & Carew, E. B. (1969). Studies of Raman Spectra of Water Solutions of Adenosine Tri-, Di-, and Monophosphate and Some Related Compounds. Biophysical Journal, 9(3), 320–329. https://doi.org/10.1016/s0006-3495(69)86389-7
10.1016/S0006-3495(69)86389-7
Cites
Schmidt, C., & Chou, I.-M. (n.d.). The Hydrothermal Diamond Anvil Cell (HDAC) for Raman spectroscopic studies of geological fluids at high pressures and temperatures. Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage, 249–278. https://doi.org/10.1180/emu-notes.12.7
10.1180/EMU-notes.12.7
Cites
Schmidt, C., & Ziemann, M. A. (2000). In-situ Raman spectroscopy of quartz: A pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures. American Mineralogist, 85(11–12), 1725–1734. https://doi.org/10.2138/am-2000-11-1216
10.2138/am-2000-11-1216
Cites
Testemale, D., Argoud, R., Geaymond, O., & Hazemann, J.-L. (2005). High pressure/high temperature cell for x-ray absorption and scattering techniques. Review of Scientific Instruments, 76(4). https://doi.org/10.1063/1.1884188
10.1063/1.1884188
Cites
Contact
Moeller, Christoph
Institute of Geosciences, Potsdam, Germany;
Moeller, Christoph
Institute of Geosciences, Potsdam, Germany;
Moeller, Christoph
Institute of Geosciences, Potsdam, Germany;
Citiation
Moeller, C., Schmidt, C., Testemale, D., Guyot, F., Kokh, M., & Wilke, M. (2023). Database of in-situ Raman spectra from N2H2ATP solutions at 80,100 and 120 °C and up to 1666 MPa for determination of the rate constant of the ATP hydrolysis [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2023.031