Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

Database of in-situ Raman spectra from N2H2ATP solutions at 80,100 and 120 °C and up to 1666 MPa for determination of the rate constant of the ATP hydrolysis

Moeller, Christoph | Schmidt, Christian | Testemale, Denis | Guyot, François | Kokh, Maria | Wilke, Max

GFZ Data Services

(2023)

In biochemical systems, enzymes catalyze the endergonic phosphorylation of adenosine diphos-phate (ADP) to adenosine triphosphate (ATP) by different pathways, e.g., oxidative phosphoryla-tion catalyzed by membrane bound ATP synthase or substrate-level phosphorylation. The stored energy is released by the enzymatically controlled exergonic hydrolysis of ATP to power other vital endergonic reactions; therefore, ATP is widely known as the universal energy currency. Rapid abiotic ATP hydrolysis kinetics thus means higher maintenance energy costs for cells, and it has been suggested that this is an important factor in setting the limits to the functioning of living organisms (Bains et al. 2015). In order to evaluate the running conditions of the in-situ procedure by Moeller et al. (2022) using Raman spectroscopy opened up an efficient way of obtaining further insights to the effects of P-T- ionic composition on the kinetics of ATP-ADP hy-drolysis. Raman spectroscopy can be combined with a hydrothermal diamond anvil cell, which provides an isochoric system for measurements up to pressures of 2000 MPa. Another system for in-situ Raman spectroscopy at elevated pressures and temperatures is based on an autoclave fitted with optical high-pressure windows, as shown by Louvel et al. (2015) and works up to 200 MPa. In this system, pressure and temperature can be controlled independently, so that isobaric temperature series are possible. This data publication compromises all Raman spectra measured in-situ of N2H2ATP solutions at 80, 100 and 120 °C and up to 1666 MPa to determine the rate constants of the hydrolysis of adenosine triphosphate (ATP) to adenosine diphosphate (ADP) at 48 different P-T conditions. Furthermore, an assignment of peaks in the fitted range, the initial fit parameters and the fit-results are provided. Besides the kinetic data, the pH of the ATP solutions was calculated at ex-perimental temperature and pressure conditions.

Keywords


Originally assigned keywords
ATP
adenosine triphosphate
ADP
adenosine diphosphate
AMP
adenosine monophosphate
Insitu Raman spectroscopy
Autoclave
Hydrothermal diamond anvil cell
HDAC
Hydrolysis
Kinetics
metabolite
reaction kinetics
HYDROTHERMAL VENTS

MSL enriched keywords
Technique
chemical and mineralogical analysis
Raman spectrometry - chemistry and mineralogy
crystal structure analysis
Raman spectrometry - crystal lattice
minerals
chemical elements
carbon
diamond
Apparatus
deformation testing
compression testing
diamond anvil cell
measured property
pH

MSL enriched sub domains i

microscopy and tomography
rock and melt physics
geochemistry


Source publisher

GFZ Data Services


DOI

10.5880/fidgeo.2023.031


Authors

Moeller, Christoph

0000-0001-7824-8004

Institute of Geosciences, University of Potsdam, Potsdam, Germany;

Schmidt, Christian

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Testemale, Denis

Néel Institute, Univ. Grenoble Alpes, Grenoble, France;

Guyot, François

0000-0003-4622-2218

IMPMC Muséum National d'Histoire Naturelle, Paris, France;

Kokh, Maria

0000-0002-0855-015X

Institut für Geowissenschaften, Potsdam, Germany; Institut für Mineralogie, Münster, Germany;

Wilke, Max

0000-0002-1890-3940

Institute of Geosciences, University of Potsdam, Potsdam, Germany;


Contributers

Moeller, Christoph

ContactPerson

0000-0001-7824-8004

Institute of Geosciences, University of Potsdam, Potsdam, Germany;

Moeller, Christoph

DataCollector

0000-0001-7824-8004

Institute of Geosciences, University of Potsdam, Potsdam, Germany;

Schmidt, Christian

DataCollector

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Testemale, Denis

DataCollector

Néel Institute, Univ. Grenoble Alpes, Grenoble, France;

Guyot, François

Researcher

0000-0003-4622-2218

IMPMC Muséum National d'Histoire Naturelle, Paris, France;

Kokh, Maria

DataCollector

0000-0002-0855-015X

Institut für Geowissenschaften, Potsdam, Germany; Institut für Mineralogie, Münster, Germany;

Wilke, Max

Supervisor

0000-0002-1890-3940

Institute of Geosciences, University of Potsdam, Potsdam, Germany;

Hydrothermal Diamond-Anvil Cell Laboratory

HostingInstitution

GFZ German Research Centre for Geosciences, Potsdam, Germany ;

Laboratory Of Fundamental Research In Condensed Matter Physics

HostingInstitution

Néel Institute, Grenoble, France;

Moeller, Christoph

ContactPerson

Institute of Geosciences, University of Potsdam, Potsdam, Germany;

Moeller, Christoph

ContactPerson

Institute of Geosciences, Potsdam, Germany;


References

Moeller, C., Schmidt, C., Testemale, D., Guyot, F., Kokh, M., & Wilke, M. (2024). Hydrolysis rate constants of ATP up to 120 °C and 1.6 GPa: Implications for life at extreme conditions. Geochimica et Cosmochimica Acta, 382, 74–90. https://doi.org/10.1016/j.gca.2024.06.017

10.1016/j.gca.2024.06.017

IsSupplementTo

Bains, W., Xiao, Y., & Yu, C. (2015). Prediction of the Maximum Temperature for Life Based on the Stability of Metabolites to Decomposition in Water. Life, 5(2), 1054–1100. https://doi.org/10.3390/life5021054

10.3390/life5021054

Cites

Bassett, W. A., Shen, A. H., Bucknum, M., & Chou, I.-M. (1993). Hydrothermal studies in a new diamond anvil cell up to 10 GPa and from −190°C to 1200°C. Pure and Applied Geophysics, 141(2–4), 487–495. https://doi.org/10.1007/bf00998341

10.1007/BF00998341

Cites

Bruyère, R., Prat, A., Goujon, C., & Hazemann, J.-L. (2008). A new pressure regulation device using high pressure isolation valves. Journal of Physics: Conference Series, 121(12), 122003. https://doi.org/10.1088/1742-6596/121/12/122003

10.1088/1742-6596/121/12/122003

Cites

Rudolph, W. W. (2010). Raman- and infrared-spectroscopic investigations of dilute aqueous phosphoric acid solutions. Dalton Transactions, 39(40), 9642. https://doi.org/10.1039/c0dt00417k

10.1039/C0DT00417K

Cites

Eysel, H. H., & Lim, K. T. (1988). Raman intensities of phosphate and diphosphate ions in aqueous solution. Journal of Raman Spectroscopy, 19(8), 535–539. Portico. https://doi.org/10.1002/jrs.1250190807

10.1002/jrs.1250190807

Cites

Rimai, L., & Heyde, M. E. (1971). Raman spectroscopic study of the interaction of Ca2+ and Mg2+ with the triphosphate moiety of adenosine triphosphate in aqueous solution. Biochemistry, 10(7), 1121–1128. https://doi.org/10.1021/bi00783a004

10.1021/bi00783a004

Cites

Leibrock, E., Bayer, P., & Lüdemann, H.-D. (1995). Nonenzymatic hydrolysis of adenosinetriphosphate (ATP) at high temperatures and high pressures. Biophysical Chemistry, 54(2), 175–180. https://doi.org/10.1016/0301-4622(94)00134-6

10.1016/0301-4622(94)00134-6

Cites

Kadleı́ková, M., Breza, J., & Veselý, M. (2001). Raman spectra of synthetic sapphire. Microelectronics Journal, 32(12), 955–958. https://doi.org/10.1016/s0026-2692(01)00087-8

10.1016/S0026-2692(01)00087-8

Cites

Louvel, M., Bordage, A., Da Silva-Cadoux, C., Testemale, D., Lahera, E., Del Net, W., Geaymond, O., Dubessy, J., Argoud, R., & Hazemann, J.-L. (2015). A high-pressure high-temperature setup for in situ Raman spectroscopy of supercritical fluids. Journal of Molecular Liquids, 205, 54–60. https://doi.org/10.1016/j.molliq.2014.09.032

10.1016/j.molliq.2014.09.032

Cites

Marshall, W. L., & Begun, G. M. (1989). Raman spectroscopy of aqueous phosphate solutions at temperatures up to 450 °C. Two liquid phases, supercritical fluids, and pyro- to ortho-phosphate conversions. J. Chem. Soc., Faraday Trans. 2, 85(12), 1963–1978. https://doi.org/10.1039/f29898501963

10.1039/F29898501963

Cites

Mathlouthi, M., Seuvre, A.-M., & Koenig, J. L. (1984). F.t.-i.r. and laser-Raman spectra of adenine and adenosine. Carbohydrate Research, 131(1), 1–15. https://doi.org/10.1016/0008-6215(84)85398-7

10.1016/0008-6215(84)85398-7

Cites

Moeller, C., Schmidt, C., Guyot, F., & Wilke, M. (2022). Hydrolysis rate constants of ATP determined in situ at elevated temperatures. Biophysical Chemistry, 290, 106878. https://doi.org/10.1016/j.bpc.2022.106878

10.1016/j.bpc.2022.106878

Cites

Preston, C. M., & Adams, W. A. (1979). A laser Raman spectroscopic study of aqueous orthophosphate salts. The Journal of Physical Chemistry, 83(7), 814–821. https://doi.org/10.1021/j100470a011

10.1021/j100470a011

Cites

Rimai, L., Cole, T., Parsons, J. L., Hickmott, J. T., & Carew, E. B. (1969). Studies of Raman Spectra of Water Solutions of Adenosine Tri-, Di-, and Monophosphate and Some Related Compounds. Biophysical Journal, 9(3), 320–329. https://doi.org/10.1016/s0006-3495(69)86389-7

10.1016/S0006-3495(69)86389-7

Cites

Schmidt, C., & Chou, I.-M. (n.d.). The Hydrothermal Diamond Anvil Cell (HDAC) for Raman spectroscopic studies of geological fluids at high pressures and temperatures. Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage, 249–278. https://doi.org/10.1180/emu-notes.12.7

10.1180/EMU-notes.12.7

Cites

Schmidt, C., & Ziemann, M. A. (2000). In-situ Raman spectroscopy of quartz: A pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures. American Mineralogist, 85(11–12), 1725–1734. https://doi.org/10.2138/am-2000-11-1216

10.2138/am-2000-11-1216

Cites

Testemale, D., Argoud, R., Geaymond, O., & Hazemann, J.-L. (2005). High pressure/high temperature cell for x-ray absorption and scattering techniques. Review of Scientific Instruments, 76(4). https://doi.org/10.1063/1.1884188

10.1063/1.1884188

Cites


Contact

Moeller, Christoph

Institute of Geosciences, Potsdam, Germany;

Moeller, Christoph

Institute of Geosciences, Potsdam, Germany;

Moeller, Christoph

Institute of Geosciences, Potsdam, Germany;


Citiation

Moeller, C., Schmidt, C., Testemale, D., Guyot, F., Kokh, M., & Wilke, M. (2023). Database of in-situ Raman spectra from N2H2ATP solutions at 80,100 and 120 °C and up to 1666 MPa for determination of the rate constant of the ATP hydrolysis [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2023.031