Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

Global mantle clinopyroxene data (major and trace elements)

Qin, Ben | Fang, Huang | Shichun, Huang | Andre, Python | Yunfeng, Chen | ZhangZhou, J.

GFZ Data Services

(2022)

Compilation of global major and trace element compositional data for clinopyroxenes from mantle xenoliths from 972 locations worldwide, originally downloaded from the GEOROC database (https://georoc.eu/; accessed 14 July 2020). Each location includes multiple samples and analyses. To exclude unreliable samples, we used only clinopyroxenes with 40–60 wt.% SiO2, <40 wt.% MgO, <30 wt.% FeOT, <26 wt.% CaO, and oxide totals of 98.5–101.5 wt.%. Elements missing from >60% of the entire dataset were not considered. The dataset contains 21,605 observations (rows) corresponding to clinopyroxene major element analyses (SiO2, TiO2, Al2O3, Cr2O3, FeOT, CaO, MgO, MnO, and Na2O), and 2,967 rows of trace element analyses (including Sc, Ti, V, Cr, Ni, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Pb, Th, and U). Database as published in Qin et al. (2022).

Keywords


Originally assigned keywords
clinopyroxene
major elements
trace elements
rare earth elements
xenolith
clinopyroxenite
dunite
harzburgite
kimberlite
lherzolite
peridotite
pyroxenite
wehrlite
Archean greenstone belt
Archean TTGgneiss complex
aseismic ridge
continental intraplate
setting
continental rift
convergent margin
large igneous province continental
large igneous province oceanic
oceanic island
seamount
GEOCHEMISTRY

Corresponding MSL vocabulary keywords
major elements
major elements
trace elements
trace elements
peridotite
pyroxenite
convergent tectonic plate boundary
seamount
seamount

MSL enriched keywords
analysis
microchemical analysis
major elements
whole rock analysis
major elements
trace elements
trace elements
igneous rock - intrusive
ultrabasic intrusive
peridotite
pyroxenite
tectonic plate boundary
convergent tectonic plate boundary
Modeled geomorphological feature
coastal and oceanic landforms
seamount
volcanic landforms
seamount
measured property
barium
calcium
calcium oxide
cerium
chromium
chromium oxide
dysprosium
erbium
europium
gadolinium
hafnium
holmium
iron
ferrous iron oxide (di-valent)
total iron oxide content reported as ferrous (di-valent) iron
lanthanum
lead (Pb)
lutetium
magnesium
magnesium oxide
manganese
manganese oxide
neodymium
nickel
niobium
praseodymium
rubidium
samarium
scandium
silicon
silicon dioxide
strontium
tantalum
terbium
thorium
thulium
titanium
titanium oxide
ytterbium
zirconium

MSL enriched sub domains i

geochemistry
analogue modelling of geologic processes


Source publisher

GFZ Data Services


DOI

10.5880/digis.e.2024.007


Authors

Qin, Ben

0000-0001-9821-1639

Zhejiang University, Hangzhou, China;

Fang, Huang

0000-0002-6017-442X

CSIRO Mineral Resources, Kensington, WA, Australia;

Shichun, Huang

0000-0001-7660-8766

Department of Geoscience, University of Nevada, Las Vegas, NV, USA;

Andre, Python

0000-0001-8094-7226

Zhejiang University, Hangzhou, China;

Yunfeng, Chen

0000-0002-7534-0021

Zhejiang University, Hangzhou, China;

ZhangZhou, J.

0000-0003-0107-0548

Zhejiang University, Hangzhou, China;


Contributers

Qin, Ben

ContactPerson

Zhejiang University, Hangzhou, China;

ZhangZhou, J.

ContactPerson

Zhejiang University, Hangzhou, China;


References

Qin, B., Fang, H., Shichun, H., Andre, P., Yunfeng, C., &amp; J, Z. Z. (2022). <i>Global mantle clinopyroxene data (major and trace elements)</i> [Data set]. GRO.data. https://doi.org/10.25625/AVAW2Y

10.25625/AVAW2Y

IsIdenticalTo

Qin, B., Huang, F., Huang, S., Python, A., Chen, Y., & ZhangZhou, J. (2022). Machine Learning Investigation of Clinopyroxene Compositions to Evaluate and Predict Mantle Metasomatism Worldwide. Journal of Geophysical Research: Solid Earth, 127(5). Portico. https://doi.org/10.1029/2021jb023614

10.1029/2021JB023614

IsSupplementTo

Qin, B., Huang, F., Shichun Huang, Python, A., Yunfeng Chen, &amp; J ZhangZhou. (2021). Machine Learning Investigation of Clinopyroxene Compositions to Evaluate and Predict Mantle Metasomatism Worldwide. <i>Zenodo</i>. https://doi.org/10.5281/ZENODO.6466993

10.5281/zenodo.6466993

IsSupplementTo

Abbott, M. J. (1969). Petrology of the Nandewar Volcano, N.S.W., Australia. Contributions to Mineralogy and Petrology, 20(2), 115–134. https://doi.org/10.1007/bf00399627

10.1007/BF00399627

Cites

Abdallah, S. E., Ali, S., & Obeid, M. A. (2019). Geochemistry of an Alaskan-type mafic-ultramafic complex in Eastern Desert, Egypt: New insights and constraints on the Neoproterozoic island arc magmatism. Geoscience Frontiers, 10(3), 941–955. https://doi.org/10.1016/j.gsf.2018.04.009

10.1016/j.gsf.2018.04.009

Cites

Abdelfadil, K. M., Obeid, M. A., Azer, M. K., & Asimow, P. D. (2018). Late Neoproterozoic adakitic lavas in the Arabian-Nubian shield, Sinai Peninsula, Egypt. Journal of Asian Earth Sciences, 158, 301–323. https://doi.org/10.1016/j.jseaes.2018.02.018

10.1016/j.jseaes.2018.02.018

Cites

Abdelfadil, Kh. M., Romer, R. L., Seifert, Th., & Lobst, R. (2013). Calc-alkaline lamprophyres from Lusatia (Germany)—Evidence for a repeatedly enriched mantle source. Chemical Geology, 353, 230–245. https://doi.org/10.1016/j.chemgeo.2012.10.023

10.1016/j.chemgeo.2012.10.023

Cites

Abdel-Karim, A.-A. M., Ali, S., El-Awady, A., Elwan, W., Khedr, M. Z., & Tamura, A. (2019). Mineral and bulk–rock chemistry of Shadli bimodal metavolcanics from Eastern Desert of Egypt: Implication for tectonomagmatic setting and Neoproterozoic continental growth in the Arabian–Nubian Shield. Lithos, 338–339, 204–217. https://doi.org/10.1016/j.lithos.2019.04.026

10.1016/j.lithos.2019.04.026

Cites

ABE, N., ARAI, S., & NINOMIYA, A. (1995). Peridotite xenoliths and essential ejecta from the Ninomegata crater, the Northeastern Japan arc. JOURNAL OF MINERALOGY, PETROLOGY AND ECONOMIC GEOLOGY, 90(2), 41–49. https://doi.org/10.2465/ganko.90.41

10.2465/ganko.90.41

Cites

ABE, N., ARAI, S., & SAEKI, Y. (1992). Hydration processes in the arc mantle; petrology of the Megata peridotite xenoliths, the Northeast Japan arc. JOURNAL OF MINERALOGY, PETROLOGY AND ECONOMIC GEOLOGY, 87(8), 305–317. https://doi.org/10.2465/ganko.87.305

10.2465/ganko.87.305

Cites

Abe, N., Arai, S., & Yurimoto, H. (1998). Geochemical characteristics of the uppermost mantle beneath the Japan island arcs: implications for upper mantle evolution. Physics of the Earth and Planetary Interiors, 107(1–3), 233–248. https://doi.org/10.1016/s0031-9201(97)00136-2

10.1016/S0031-9201(97)00136-2

Cites

Abe, N., Takami, M., & Arai, S. (2003). Petrological feature of spinel lherzolite xenolith from Oki‐Dogo Island: An implication for variety of the upper mantle peridotite beneath southwestern Japan. Island Arc, 12(2), 219–232. Portico. https://doi.org/10.1046/j.1440-1738.2003.00391.x

10.1046/j.1440-1738.2003.00391.x

Cites

ABE, S., & YAMAMOTO, M. (1999). Rb-Sr mineral isochron ages of mantle peridotite xenoliths from Ichinomegata and Kurose, Japan. JOURNAL OF MINERALOGY, PETROLOGY AND ECONOMIC GEOLOGY, 94(8), 295–310. https://doi.org/10.2465/ganko.94.295

10.2465/ganko.94.295

Cites

Ablay, G. J., Ernst, G. G. J., Marti, J., & Sparks, R. S. J. (1995). The ?2 ka subplinian eruption of Monta�a Blanca, Tenerife. Bulletin of Volcanology, 57(5), 337–355. https://doi.org/10.1007/bf00301292

10.1007/BF00301292

Cites

Abu El-Rus, M. A., Chazot, G., Vannucci, R., Gahlan, H. A., Boghdady, G. Y., & Paquette, J.-L. (2016). Softening of sub-continental lithosphere prior rifting: Evidence from clinopyroxene chemistry in peridotite xenoliths from Natash volcanic province, SE Egypt. Journal of Volcanology and Geothermal Research, 327, 84–98. https://doi.org/10.1016/j.jvolgeores.2016.07.004

10.1016/j.jvolgeores.2016.07.004

Cites

Abu El-Rus, M. A., Chazot, G., Vannucci, R., & Paquette, J.-L. (2018). Tracing the HIMU component within Pan-African lithosphere beneath northeast Africa: Evidence from Late Cretaceous Natash alkaline volcanics, Egypt. Lithos, 300–301, 136–153. https://doi.org/10.1016/j.lithos.2017.11.037

10.1016/j.lithos.2017.11.037

Cites

Abu El-Rus, M. A., Neumann, E.-R., & Peters, V. (2006). Serpentinization and dehydration in the upper mantle beneath Fuerteventura (eastern Canary Islands): Evidence from mantle xenoliths. Lithos, 89(1–2), 24–46. https://doi.org/10.1016/j.lithos.2005.09.005

10.1016/j.lithos.2005.09.005

Cites

Ackerman, L., Bizimis, M., Haluzová, E., Sláma, J., Svojtka, M., Hirajima, T., & Erban, V. (2016). Re–Os and Lu–Hf isotopic constraints on the formation and age of mantle pyroxenites from the Bohemian Massif. Lithos, 256–257, 197–210. https://doi.org/10.1016/j.lithos.2016.03.023

10.1016/j.lithos.2016.03.023

Cites

Ackerman, L., Jelínek, E., Medaris, G., Ježek, J., Siebel, W., & Strnad, L. (2009). Geochemistry of Fe-rich peridotites and associated pyroxenites from Horní Bory, Bohemian Massif: Insights into subduction-related melt–rock reactions. Chemical Geology, 259(3–4), 152–167. https://doi.org/10.1016/j.chemgeo.2008.10.042

10.1016/j.chemgeo.2008.10.042

Cites


Contact

ZhangZhou, J.

Zhejiang University, Hangzhou, China;

ZhangZhou, J.

Zhejiang University, Hangzhou, China;


Citiation

Qin, B., Fang, H., Shichun, H., Andre, P., Yunfeng, C., & ZhangZhou, J. (2022). Global mantle clinopyroxene data (major and trace elements) [Data set]. GFZ Data Services. https://doi.org/10.5880/DIGIS.E.2024.007