Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.
Data Publication
Global mantle clinopyroxene data (major and trace elements)
Qin, Ben | Fang, Huang | Shichun, Huang | Andre, Python | Yunfeng, Chen | ZhangZhou, J.
GFZ Data Services
(2022)
Compilation of global major and trace element compositional data for clinopyroxenes from mantle xenoliths from 972 locations worldwide, originally downloaded from the GEOROC database (https://georoc.eu/; accessed 14 July 2020). Each location includes multiple samples and analyses. To exclude unreliable samples, we used only clinopyroxenes with 40–60 wt.% SiO2, <40 wt.% MgO, <30 wt.% FeOT, <26 wt.% CaO, and oxide totals of 98.5–101.5 wt.%. Elements missing from >60% of the entire dataset were not considered. The dataset contains 21,605 observations (rows) corresponding to clinopyroxene major element analyses (SiO2, TiO2, Al2O3, Cr2O3, FeOT, CaO, MgO, MnO, and Na2O), and 2,967 rows of trace element analyses (including Sc, Ti, V, Cr, Ni, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Pb, Th, and U). Database as published in Qin et al. (2022).
Keywords
Originally assigned keywords
Corresponding MSL vocabulary keywords
MSL enriched keywords
MSL enriched sub domains i
Source publisher
GFZ Data Services
DOI
10.5880/digis.e.2024.007
Authors
Qin, Ben
0000-0001-9821-1639
Zhejiang University, Hangzhou, China;
Fang, Huang
0000-0002-6017-442X
CSIRO Mineral Resources, Kensington, WA, Australia;
Shichun, Huang
0000-0001-7660-8766
Department of Geoscience, University of Nevada, Las Vegas, NV, USA;
Andre, Python
0000-0001-8094-7226
Zhejiang University, Hangzhou, China;
Yunfeng, Chen
0000-0002-7534-0021
Zhejiang University, Hangzhou, China;
ZhangZhou, J.
0000-0003-0107-0548
Zhejiang University, Hangzhou, China;
Contributers
Qin, Ben
ContactPerson
Zhejiang University, Hangzhou, China;
ZhangZhou, J.
ContactPerson
Zhejiang University, Hangzhou, China;
References
Qin, B., Fang, H., Shichun, H., Andre, P., Yunfeng, C., & J, Z. Z. (2022). <i>Global mantle clinopyroxene data (major and trace elements)</i> [Data set]. GRO.data. https://doi.org/10.25625/AVAW2Y
10.25625/AVAW2Y
IsIdenticalTo
Qin, B., Huang, F., Huang, S., Python, A., Chen, Y., & ZhangZhou, J. (2022). Machine Learning Investigation of Clinopyroxene Compositions to Evaluate and Predict Mantle Metasomatism Worldwide. Journal of Geophysical Research: Solid Earth, 127(5). Portico. https://doi.org/10.1029/2021jb023614
10.1029/2021JB023614
IsSupplementTo
Qin, B., Huang, F., Shichun Huang, Python, A., Yunfeng Chen, & J ZhangZhou. (2021). Machine Learning Investigation of Clinopyroxene Compositions to Evaluate and Predict Mantle Metasomatism Worldwide. <i>Zenodo</i>. https://doi.org/10.5281/ZENODO.6466993
10.5281/zenodo.6466993
IsSupplementTo
Abbott, M. J. (1969). Petrology of the Nandewar Volcano, N.S.W., Australia. Contributions to Mineralogy and Petrology, 20(2), 115–134. https://doi.org/10.1007/bf00399627
10.1007/BF00399627
Cites
Abdallah, S. E., Ali, S., & Obeid, M. A. (2019). Geochemistry of an Alaskan-type mafic-ultramafic complex in Eastern Desert, Egypt: New insights and constraints on the Neoproterozoic island arc magmatism. Geoscience Frontiers, 10(3), 941–955. https://doi.org/10.1016/j.gsf.2018.04.009
10.1016/j.gsf.2018.04.009
Cites
Abdelfadil, K. M., Obeid, M. A., Azer, M. K., & Asimow, P. D. (2018). Late Neoproterozoic adakitic lavas in the Arabian-Nubian shield, Sinai Peninsula, Egypt. Journal of Asian Earth Sciences, 158, 301–323. https://doi.org/10.1016/j.jseaes.2018.02.018
10.1016/j.jseaes.2018.02.018
Cites
Abdelfadil, Kh. M., Romer, R. L., Seifert, Th., & Lobst, R. (2013). Calc-alkaline lamprophyres from Lusatia (Germany)—Evidence for a repeatedly enriched mantle source. Chemical Geology, 353, 230–245. https://doi.org/10.1016/j.chemgeo.2012.10.023
10.1016/j.chemgeo.2012.10.023
Cites
Abdel-Karim, A.-A. M., Ali, S., El-Awady, A., Elwan, W., Khedr, M. Z., & Tamura, A. (2019). Mineral and bulk–rock chemistry of Shadli bimodal metavolcanics from Eastern Desert of Egypt: Implication for tectonomagmatic setting and Neoproterozoic continental growth in the Arabian–Nubian Shield. Lithos, 338–339, 204–217. https://doi.org/10.1016/j.lithos.2019.04.026
10.1016/j.lithos.2019.04.026
Cites
ABE, N., ARAI, S., & NINOMIYA, A. (1995). Peridotite xenoliths and essential ejecta from the Ninomegata crater, the Northeastern Japan arc. JOURNAL OF MINERALOGY, PETROLOGY AND ECONOMIC GEOLOGY, 90(2), 41–49. https://doi.org/10.2465/ganko.90.41
10.2465/ganko.90.41
Cites
ABE, N., ARAI, S., & SAEKI, Y. (1992). Hydration processes in the arc mantle; petrology of the Megata peridotite xenoliths, the Northeast Japan arc. JOURNAL OF MINERALOGY, PETROLOGY AND ECONOMIC GEOLOGY, 87(8), 305–317. https://doi.org/10.2465/ganko.87.305
10.2465/ganko.87.305
Cites
Abe, N., Arai, S., & Yurimoto, H. (1998). Geochemical characteristics of the uppermost mantle beneath the Japan island arcs: implications for upper mantle evolution. Physics of the Earth and Planetary Interiors, 107(1–3), 233–248. https://doi.org/10.1016/s0031-9201(97)00136-2
10.1016/S0031-9201(97)00136-2
Cites
Abe, N., Takami, M., & Arai, S. (2003). Petrological feature of spinel lherzolite xenolith from Oki‐Dogo Island: An implication for variety of the upper mantle peridotite beneath southwestern Japan. Island Arc, 12(2), 219–232. Portico. https://doi.org/10.1046/j.1440-1738.2003.00391.x
10.1046/j.1440-1738.2003.00391.x
Cites
ABE, S., & YAMAMOTO, M. (1999). Rb-Sr mineral isochron ages of mantle peridotite xenoliths from Ichinomegata and Kurose, Japan. JOURNAL OF MINERALOGY, PETROLOGY AND ECONOMIC GEOLOGY, 94(8), 295–310. https://doi.org/10.2465/ganko.94.295
10.2465/ganko.94.295
Cites
Ablay, G. J., Ernst, G. G. J., Marti, J., & Sparks, R. S. J. (1995). The ?2 ka subplinian eruption of Monta�a Blanca, Tenerife. Bulletin of Volcanology, 57(5), 337–355. https://doi.org/10.1007/bf00301292
10.1007/BF00301292
Cites
Abu El-Rus, M. A., Chazot, G., Vannucci, R., Gahlan, H. A., Boghdady, G. Y., & Paquette, J.-L. (2016). Softening of sub-continental lithosphere prior rifting: Evidence from clinopyroxene chemistry in peridotite xenoliths from Natash volcanic province, SE Egypt. Journal of Volcanology and Geothermal Research, 327, 84–98. https://doi.org/10.1016/j.jvolgeores.2016.07.004
10.1016/j.jvolgeores.2016.07.004
Cites
Abu El-Rus, M. A., Chazot, G., Vannucci, R., & Paquette, J.-L. (2018). Tracing the HIMU component within Pan-African lithosphere beneath northeast Africa: Evidence from Late Cretaceous Natash alkaline volcanics, Egypt. Lithos, 300–301, 136–153. https://doi.org/10.1016/j.lithos.2017.11.037
10.1016/j.lithos.2017.11.037
Cites
Abu El-Rus, M. A., Neumann, E.-R., & Peters, V. (2006). Serpentinization and dehydration in the upper mantle beneath Fuerteventura (eastern Canary Islands): Evidence from mantle xenoliths. Lithos, 89(1–2), 24–46. https://doi.org/10.1016/j.lithos.2005.09.005
10.1016/j.lithos.2005.09.005
Cites
Ackerman, L., Bizimis, M., Haluzová, E., Sláma, J., Svojtka, M., Hirajima, T., & Erban, V. (2016). Re–Os and Lu–Hf isotopic constraints on the formation and age of mantle pyroxenites from the Bohemian Massif. Lithos, 256–257, 197–210. https://doi.org/10.1016/j.lithos.2016.03.023
10.1016/j.lithos.2016.03.023
Cites
Ackerman, L., Jelínek, E., Medaris, G., Ježek, J., Siebel, W., & Strnad, L. (2009). Geochemistry of Fe-rich peridotites and associated pyroxenites from Horní Bory, Bohemian Massif: Insights into subduction-related melt–rock reactions. Chemical Geology, 259(3–4), 152–167. https://doi.org/10.1016/j.chemgeo.2008.10.042
10.1016/j.chemgeo.2008.10.042
Cites
Contact
ZhangZhou, J.
Zhejiang University, Hangzhou, China;
ZhangZhou, J.
Zhejiang University, Hangzhou, China;
Citiation
Qin, B., Fang, H., Shichun, H., Andre, P., Yunfeng, C., & ZhangZhou, J. (2022). Global mantle clinopyroxene data (major and trace elements) [Data set]. GFZ Data Services. https://doi.org/10.5880/DIGIS.E.2024.007