VOLcanic conduit processes and their effect on PROjectile eXit dYnamics (VOLPROXY)

Montanaro, Cristian; Cerminara, Matteo;

2022-02 || GFZ Data Services

Volcanic projectiles are centimeter- to meter-sized clasts – both solid-to-molten rock fragments or lithic eroded from conduits – ejected during explosive volcanic eruptions that follow ballistic trajectories. Despite being ranked as less dangerous than large-scale processes such as pyroclastic density currents (hot avalanches of gas and pyroclasts), volcanic projectiles still represent a constant threat to life and properties in the vicinity of volcanic vents, and frequently cause fatal accidents on volcanoes. Mapping of their size, shape, and location in volcanic deposits can be combined to model possible trajectories of projectiles from the vent to their final position, and to estimate crucial source parameters of the driving eruption, such as ejection velocity and pressure differential at the vent. Moreover, size and spatial distributions of volcanic projectiles from past eruptions, coupled with ballistic modelling of their trajectory, are crucial to forecast their possible impact in future eruptions. The reliability of such models strongly depends on i) the appropriate physical functions and input parameters and ii) observational validations. In this study, we aimed to unravel intra-conduit processes that strongly control the dynamic of volcanic projectiles by combining numerical modelling and novel experimentally-determined source parameter. In particular, the multiphase ASHEE model (Cerminara 2016; Cerminara et al. 2016) suited for testing post-fragmentation conduit dynamics based on a robust shock tube experimental dataset. By exploding mixtures of pumice and dense lithic particles within a specially designed transparent autoclave, and by using a raft of pressure sensors, ultra-high-speed cameras and pre-sieved natural particles, we observed and quantified: i) kinematic data of the particles and of the gas front along the shock tube and outside, ii) pressure decay at 1GHz resolution. By feeding the ASHEE model with these datasets, and using initial and boundary conditions similar to that of the experiment, we defined domains composed by a pressurized shock tube and the outside chamber at ambient conditions, and tested particles particle motion according to a Lagrangian approach, as well as gas flow with a Eulerian approach (a 3D finite-volume numerical solver, compressible). The comparison between data and model yields estimate of the particle kinematic inside the tube, the pressure evolution at the top and the bottom of the tube, and the eruption source parameters at the tube exit.

Originally assigned keywords

Corresponding MSL vocabulary keywords

MSL enriched keywords

Originally assigned sub domains
  • rock and melt physics
MSL enriched sub domains
  • analogue modelling of geologic processes
Source http://doi.org/10.5880/fidgeo.2022.004
Source publisher GFZ Data Services
DOI 10.5880/fidgeo.2022.004
License CC BY 4.0
Authors
  • Montanaro, Cristian
  • 0000-0002-7896-3419
  • Ludwig-Maximilians-University Munich, Munich, Germany

  • Cerminara, Matteo
  • 0000-0001-5155-5872
  • INGV Pisa: Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy
References
  • Alidibirov, M., & Dingwell, D. B. (2000). Three fragmentation mechanisms for highly viscous magma under rapid decompression. Journal of Volcanology and Geothermal Research, 100(1–4), 413–421. https://doi.org/10.1016/s0377-0273(00)00149-9
  • 10.1016/S0377-0273(00)00149-9
  • Cites

  • Aravena, Á., Cioni, R., de’Michieli Vitturi, M., & Neri, A. (2018). Conduit stability effects on intensity and steadiness of explosive eruptions. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-22539-8
  • 10.1038/s41598-018-22539-8
  • Cites

  • Cagnoli, B., Barmin, A., Melnik, O., & Sparks, R. S. J. (2002). Depressurization of fine powders in a shock tube and dynamics of fragmented magma in volcanic conduits. Earth and Planetary Science Letters, 204(1–2), 101–113. https://doi.org/10.1016/s0012-821x(02)00952-4
  • 10.1016/S0012-821X(02)00952-4
  • Cites

  • Cerminara, M., Esposti Ongaro, T., & Neri, A. (2016). Large Eddy Simulation of gas–particle kinematic decoupling and turbulent entrainment in volcanic plumes. Journal of Volcanology and Geothermal Research, 326, 143–171. https://doi.org/10.1016/j.jvolgeores.2016.06.018
  • 10.1016/j.jvolgeores.2016.06.018
  • Cites

  • Cronin, S. J., Zernack, A. V., Ukstins, I. A., Turner, M. B., Torres-Orozco, R., Stewart, R. B., Smith, I. E. M., Procter, J. N., Price, R., Platz, T., Petterson, M., Neall, V. E., McDonald, G. S., Lerner, G. A., Damaschcke, M., & Bebbington, M. S. (2021). The geological history and hazards of a long-lived stratovolcano, Mt. Taranaki, New Zealand. New Zealand Journal of Geology and Geophysics, 1–23. https://doi.org/10.1080/00288306.2021.1895231
  • 10.1080/00288306.2021.1895231
  • Cites

  • Fowler, A. C., Scheu, B., Lee, W. T., & McGuinness, M. J. (2009). A theoretical model of the explosive fragmentation of vesicular magma. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2115), 731–752. https://doi.org/10.1098/rspa.2009.0382
  • 10.1098/rspa.2009.0382
  • Cites

  • Fowler, A. C., & Scheu, B. (2016). A theoretical explanation of grain size distributions in explosive rock fragmentation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2190), 20150843. https://doi.org/10.1098/rspa.2015.0843
  • 10.1098/rspa.2015.0843
  • Cites

  • Kueppers, U., Scheu, B., Spieler, O., & Dingwell, D. B. (2006). Fragmentation efficiency of explosive volcanic eruptions: A study of experimentally generated pyroclasts. Journal of Volcanology and Geothermal Research, 153(1–2), 125–135. https://doi.org/10.1016/j.jvolgeores.2005.08.006
  • 10.1016/j.jvolgeores.2005.08.006
  • Cites

  • Papale, P., & Dobran, F. (1994). Magma flow along the volcanic conduit during the Plinian and pyroclastic flow phases of the May 18, 1980, Mount St. Helens eruption. Journal of Geophysical Research: Solid Earth, 99(B3), 4355–4373. Portico. https://doi.org/10.1029/93jb02972
  • 10.1029/93JB02972
  • Cites

  • Paredes-Mariño, J., Scheu, B., Montanaro, C., Arciniega-Ceballos, A., Dingwell, D. B., & Perugini, D. (2019). Volcanic ash generation: Effects of componentry, particle size and conduit geometry on size-reduction processes. Earth and Planetary Science Letters, 514, 13–27. https://doi.org/10.1016/j.epsl.2019.02.028
  • 10.1016/j.epsl.2019.02.028
  • Cites

  • Platz, T., Cronin, S. J., Cashman, K. V., Stewart, R. B., & Smith, I. E. M. (2007). Transition from effusive to explosive phases in andesite eruptions — A case-study from the AD1655 eruption of Mt. Taranaki, New Zealand. Journal of Volcanology and Geothermal Research, 161(1–2), 15–34. https://doi.org/10.1016/j.jvolgeores.2006.11.005
  • 10.1016/j.jvolgeores.2006.11.005
  • Cites

  • Scheu, B., Kueppers, U., Mueller, S., Spieler, O., & Dingwell, D. B. (2008). Experimental volcanology on eruptive products of Unzen volcano. Journal of Volcanology and Geothermal Research, 175(1–2), 110–119. https://doi.org/10.1016/j.jvolgeores.2008.03.023
  • 10.1016/j.jvolgeores.2008.03.023
  • Cites

  • Torres-Orozco, R., Cronin, S. J., Pardo, N., & Palmer, A. S. (2016). New insights into Holocene eruption episodes from proximal deposit sequences at Mt. Taranaki (Egmont), New Zealand. Bulletin of Volcanology, 79(1). https://doi.org/10.1007/s00445-016-1085-5
  • 10.1007/s00445-016-1085-5
  • Cites
Contact
  • Montanaro, Cristian
  • Ludwig-Maximilians-University Munich, Munich, Germany
  • cristian.montanaro@min.uni-muenchen.de
Citation Montanaro, C., & Cerminara, M. (2022). VOLcanic conduit processes and their effect on PROjectile eXit dYnamics (VOLPROXY) [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2022.004