Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.
Data Publication
In-situ Raman spectra from Na2ATP solutions with starting pH 3 and 7 at 80,100 and 120 °C for determination of the hydrolysis rate constant of ATP
Moeller, Christoph | Schmidt, Christian | Guyout, Francois | Wilke, Max
GFZ Data Services
(2024)
Extremophiles maintain an active metabolism up to 122 °C (Takai et al. 2008). These extreme conditions are found, for example in hot springs, in deep oceanic and crustal sediments and in hydrothermal vents at mid-oceanic spreading ridges (Edwards et al., 2011; Heuer et al., 2020). Several studies have investigated the diversity of microorganisms and their relationship to the geological environment as well as to responses to changes. However, the physicochemical parameters necessary to sustain metabolism under these conditions, including the stability of essential molecular compounds like adenosine triphosphate (ATP) and adenosine diphosphate (ADP) have been only studied marginally. Adenosine triphosphate and adenosine diphosphate are essential energy stores in all currently known metabolic systems. In living cells, the energy is released by the enzymatically controlled exergonic hydrolysis of ATP to power other vital endergonic processes. The abiotic hydrolysis of ATP is kinetically enhanced at elevated temperatures and low pH values resulting in a very short lifetime of ATP and ADP in aqueous solutions (Hulett 1970; Khan and Mohan 1974; Leibrock et al. 1995). Therefore, the kinetic stability of ATP plays a crucial role in metabolism at extreme temperatures. This aspect has been proposed as a critical factor in determining the limits of living cells (Bains et al. 2015). This data publication compromises all Raman spectra obtained for solutions of Na2ATP with an initial pH of 3 and 7 at 80 °C, 100 °C and 120 °C and for solutions of Na2ADP with initial pH 5 at 100 °C and 120 °C. A hydrothermal diamond anvil cell (HDAC) coupled to a Raman spectrometer was used for in-situ measurements. Pressure was estimated from the vapor-liquid curve of water. In addition to the Raman spectra, the following data are provided: an assignment of peaks in the fitted spectral range, the initial fit parameters, and the fit results.
Keywords
Originally assigned keywords
MSL enriched keywords
MSL enriched sub domains i
Source publisher
GFZ Data Services
DOI
10.5880/fidgeo.2024.025
Authors
Moeller, Christoph
0000-0001-7824-8004
Institute of Geosciences, University of Potsdam, Potsdam, Germany;
Schmidt, Christian
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Guyout, Francois
0000-0003-4622-2218
IMPMC Muséum National d'Histoire Naturelle, Paris, France;
Wilke, Max
0000-0002-1890-3940
Institute of Geosciences, University of Potsdam, Potsdam, Germany;
Contributers
Moeller, Christoph
DataCollector
0000-0001-7824-8004
Institute of Geosciences, University of Potsdam, Potsdam, Germany;
Moeller, Christoph
DataCurator
0000-0001-7824-8004
Institute of Geosciences, University of Potsdam, Potsdam, Germany;
Moeller, Christoph
DataManager
0000-0001-7824-8004
Institute of Geosciences, University of Potsdam, Potsdam, Germany;
Moeller, Christoph
Researcher
0000-0001-7824-8004
Institute of Geosciences, University of Potsdam, Potsdam, Germany;
Schmidt, Christian
DataCollector
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Schmidt, Christian
Researcher
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Guyout, Francois
ProjectMember
0000-0003-4622-2218
IMPMC Muséum National d'Histoire Naturelle, Paris, France;
Guyout, Francois
Researcher
0000-0003-4622-2218
IMPMC Muséum National d'Histoire Naturelle, Paris, France;
Wilke, Max
ProjectManager
0000-0002-1890-3940
Institute of Geosciences, University of Potsdam, Potsdam, Germany;
Wilke, Max
Researcher
0000-0002-1890-3940
Institute of Geosciences, University of Potsdam, Potsdam, Germany;
Hydrothermal Diamond-Anvil Cell Laboratory
HostingInstitution
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Moeller, Christoph
ContactPerson
Institute of Geosciences, University of Potsdam, Potsdam, Germany;
References
Moeller, C., Schmidt, C., Guyot, F., & Wilke, M. (2022). Hydrolysis rate constants of ATP determined in situ at elevated temperatures. Biophysical Chemistry, 290, 106878. https://doi.org/10.1016/j.bpc.2022.106878
10.1016/j.bpc.2022.106878
IsSupplementTo
Bains, W., Xiao, Y., & Yu, C. (2015). Prediction of the Maximum Temperature for Life Based on the Stability of Metabolites to Decomposition in Water. Life, 5(2), 1054–1100. https://doi.org/10.3390/life5021054
10.3390/life5021054
Cites
Bassett, W. A., Shen, A. H., Bucknum, M., & Chou, I.-M. (1993). Hydrothermal studies in a new diamond anvil cell up to 10 GPa and from −190°C to 1200°C. Pure and Applied Geophysics, 141(2–4), 487–495. https://doi.org/10.1007/bf00998341
10.1007/BF00998341
Cites
Brooker, M. H., Nielsen, O. F., & Praestgaard, E. (1988). Assessment of correction procedures for reduction of Raman spectra. Journal of Raman Spectroscopy, 19(2), 71–78. Portico. https://doi.org/10.1002/jrs.1250190202
10.1002/jrs.1250190202
Cites
Edwards, K. J., Wheat, C. G., & Sylvan, J. B. (2011). Under the sea: microbial life in volcanic oceanic crust. Nature Reviews Microbiology, 9(10), 703–712. https://doi.org/10.1038/nrmicro2647
10.1038/nrmicro2647
Cites
Eysel, H. H., & Lim, K. T. (1988). Raman intensities of phosphate and diphosphate ions in aqueous solution. Journal of Raman Spectroscopy, 19(8), 535–539. Portico. https://doi.org/10.1002/jrs.1250190807
10.1002/jrs.1250190807
Cites
Heuer, V. B., Inagaki, F., Morono, Y., Kubo, Y., Spivack, A. J., Viehweger, B., Treude, T., Beulig, F., Schubotz, F., Tonai, S., Bowden, S. A., Cramm, M., Henkel, S., Hirose, T., Homola, K., Hoshino, T., Ijiri, A., Imachi, H., Kamiya, N., … Hinrichs, K.-U. (2020). Temperature limits to deep subseafloor life in the Nankai Trough subduction zone. Science, 370(6521), 1230–1234. https://doi.org/10.1126/science.abd7934
10.1126/science.abd7934
Cites
HULETT, H. R. (1970). Non-enzymatic Hydrolysis of Adenosine Phosphates. Nature, 225(5239), 1248–1249. https://doi.org/10.1038/2251248a0
10.1038/2251248a0
Cites
Leibrock, E., Bayer, P., & Lüdemann, H.-D. (1995). Nonenzymatic hydrolysis of adenosinetriphosphate (ATP) at high temperatures and high pressures. Biophysical Chemistry, 54(2), 175–180. https://doi.org/10.1016/0301-4622(94)00134-6
10.1016/0301-4622(94)00134-6
Cites
Marshall, W. L., & Begun, G. M. (1989). Raman spectroscopy of aqueous phosphate solutions at temperatures up to 450 °C. Two liquid phases, supercritical fluids, and pyro- to ortho-phosphate conversions. J. Chem. Soc., Faraday Trans. 2, 85(12), 1963–1978. https://doi.org/10.1039/f29898501963
10.1039/F29898501963
Cites
Mathlouthi, M., Seuvre, A.-M., & Koenig, J. L. (1984). F.t.-i.r. and laser-Raman spectra of adenine and adenosine. Carbohydrate Research, 131(1), 1–15. https://doi.org/10.1016/0008-6215(84)85398-7
10.1016/0008-6215(84)85398-7
Cites
Preston, C. M., & Adams, W. A. (1979). A laser Raman spectroscopic study of aqueous orthophosphate salts. The Journal of Physical Chemistry, 83(7), 814–821. https://doi.org/10.1021/j100470a011
10.1021/j100470a011
Cites
Rimai, L., Cole, T., Parsons, J. L., Hickmott, J. T., & Carew, E. B. (1969). Studies of Raman Spectra of Water Solutions of Adenosine Tri-, Di-, and Monophosphate and Some Related Compounds. Biophysical Journal, 9(3), 320–329. https://doi.org/10.1016/s0006-3495(69)86389-7
10.1016/S0006-3495(69)86389-7
Cites
Rudolph, W. W. (2010). Raman- and infrared-spectroscopic investigations of dilute aqueous phosphoric acid solutions. Dalton Transactions, 39(40), 9642. https://doi.org/10.1039/c0dt00417k
10.1039/C0DT00417K
Cites
Schmidt, C. (2009). Raman spectroscopic study of a H2O + Na2SO4 solution at 21– 600 °C and 0.1 MPa to 1.1 GPa: Relative differential <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mi>ν</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mtext>-</mml:mtext><mml:mmultiscripts><mml:mrow><mml:mtext>SO</mml:mtext></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow><mml:none /><mml:none /><mml:mrow><mml:mn>2</mml:mn><mml:mo>-</mml:mo></mml:mrow></mml:mmultiscripts></mml:mrow></mml:math> Raman scattering cross sections and evidence of the liquid–liquid transition. Geochimica et Cosmochimica Acta, 73(2), 425–437. https://doi.org/10.1016/j.gca.2008.10.019
10.1016/j.gca.2008.10.019
Cites
Schmidt, C., & Chou, I.-M. (n.d.). The Hydrothermal Diamond Anvil Cell (HDAC) for Raman spectroscopic studies of geological fluids at high pressures and temperatures. Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage, 249–278. https://doi.org/10.1180/emu-notes.12.7
10.1180/EMU-notes.12.7
Cites
Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T., & Horikoshi, K. (2008). Cell proliferation at 122°C and isotopically heavy CH 4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proceedings of the National Academy of Sciences, 105(31), 10949–10954. https://doi.org/10.1073/pnas.0712334105
10.1073/pnas.0712334105
Cites
Taqui Khan, M. M., & Srinivas Mohan, M. (1974). Kinetics of adenosine-5′-triphosphate hydrolysis. Journal of Inorganic and Nuclear Chemistry, 36(3), 707–709. https://doi.org/10.1016/0022-1902(74)80138-7
10.1016/0022-1902(74)80138-7
Cites
Wagner, W., & Pruß, A. (2002). The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Journal of Physical and Chemical Reference Data, 31(2), 387–535. https://doi.org/10.1063/1.1461829
10.1063/1.1461829
Cites
Contact
Moeller, Christoph
Institute of Geosciences, University of Potsdam, Potsdam, Germany;
Citiation
Moeller, C., Schmidt, C., Guyout, F., & Wilke, M. (2024). In-situ Raman spectra from Na2ATP solutions with starting pH 3 and 7 at 80,100 and 120 °C for determination of the hydrolysis rate constant of ATP [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2024.025