3D rheological model of the Southern Central Andes

Rodriguez Piceda, Constanza; Scheck-Wenderoth, Magdalena; Cacace, Mauro; Bott, Judith; Strecker, Manfred;

2021 || GFZ Data Services

The southern Central Andes (SCA, 29°S-39°S) are characterized by the subduction of the oceanic Nazca Plate beneath the continental South American Plate. One striking feature of this area is the change of the subduction angle of the Nazca Plate between 33°S and 35°S from the Chilean-Pampean flat-slab zone (< 5° dip) in the north to a steeper sector in the south (~30° dip). Subduction geometry, tectonic deformation, and seismicity at this plate boundary are closely related to the lithospheric strength in the upper plate. Despite recent research focused on the compositional and thermal characteristics of the SCA lithosphere, the lithospheric strength distribution remains largely unknown. Here we calculated the long-term lithospheric strength on the basis of an existing 3D model describing the variation of thickness, density and temperature of geological units forming the lithosphere of the SCA.

The model consists of a continental plate with sediments, a two-layer crust and the lithospheric mantle being subducted by an oceanic plate. The model extension covers an area of 700 km x 1100 km, including the orogen (i.e. magmatic arc, main orogenic wedge), the forearc and the foreland, and it extents down to 200 km depth.

Originally assigned keywords

Corresponding MSL vocabulary keywords

MSL enriched keywords

Source http://dx.doi.org/10.5880/gfz.4.5.2021.002
Source publisher GFZ Data Services
DOI 10.5880/gfz.4.5.2021.002
Authors
  • Rodriguez Piceda, Constanza
  • 0000-0002-0785-7600
  • GFZ German Research Centre for Geosciences, Potsdam, Germany; University of Potsdam, Potsdam, Germany;

  • Scheck-Wenderoth, Magdalena
  • 0000-0003-0426-8269
  • GFZ German Research Centre for Geosciences, Potsdam, Germany; RWTH Aachen, Aachen, Germany;

  • Cacace, Mauro
  • 0000-0001-6101-9918
  • CONICET; University of Buenos Aires, Buenos Aires, Argentina;

  • Bott, Judith
  • 0000-0002-2018-4754
  • GFZ German Research Centre for Geosciences, Potsdam, Germany;

Contributors
  • Rodriguez Piceda, Constanza
  • ContactPerson
  • GFZ German Research Centre for Geosciences, Potsdam, Germany;
References
  • Afonso, J. C., & Ranalli, G. (2004). Crustal and mantle strengths in continental lithosphere: is the jelly sandwich model obsolete? Tectonophysics, 394(3–4), 221–232. https://doi.org/10.1016/j.tecto.2004.08.006
  • 10.1016/j.tecto.2004.08.006
  • Cites

  • Assumpção, M., Feng, M., Tassara, A., & Julià, J. (2013). Models of crustal thickness for South America from seismic refraction, receiver functions and surface wave tomography. Tectonophysics, 609, 82–96. https://doi.org/10.1016/j.tecto.2012.11.014
  • 10.1016/j.tecto.2012.11.014
  • Cites

  • Burov, E. B. (2011). Rheology and strength of the lithosphere. Marine and Petroleum Geology, 28(8), 1402–1443. https://doi.org/10.1016/j.marpetgeo.2011.05.008
  • 10.1016/j.marpetgeo.2011.05.008
  • Cites

  • Byerlee, J. D. (1968). Brittle-ductile transition in rocks. Journal of Geophysical Research, 73(14), 4741–4750. https://doi.org/10.1029/jb073i014p04741
  • 10.1029/JB073i014p04741
  • Cites

  • Cacace, M., & Jacquey, A. B. (2017). Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks. Solid Earth, 8(5), 921–941. https://doi.org/10.5194/se-8-921-2017
  • 10.5194/se-8-921-2017
  • Cites

  • Cacace, M., & Scheck‐Wenderoth, M. (2016). Why intracontinental basins subside longer: 3‐D feedback effects of lithospheric cooling and sedimentation on the flexural strength of the lithosphere. Journal of Geophysical Research: Solid Earth, 121(5), 3742–3761. Portico. https://doi.org/10.1002/2015jb012682
  • 10.1002/2015JB012682
  • Cites

  • Gao, Y., Yuan, X., Heit, B., Tilmann, F., van Herwaarden, D. P., Thrastarson, S., Fichtner, A., & Schurr, B. D. (2021). Impact of the Juan Fernandez ridge on the Pampean flat subduction inferred from full waveform inversion. https://doi.org/10.1002/essoar.10507705.1
  • 10.1002/essoar.10507705.1
  • Cites

  • Gleason, G. C., & Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics, 247(1–4), 1–23. https://doi.org/10.1016/0040-1951(95)00011-b
  • 10.1016/0040-1951(95)00011-B
  • Cites

  • Goes, S., Govers, R., & Vacher, P. (2000). Shallow mantle temperatures under Europe from P and S wave tomography. Journal of Geophysical Research: Solid Earth, 105(B5), 11153–11169. Portico. https://doi.org/10.1029/1999jb900300
  • 10.1029/1999JB900300
  • Cites

  • Goetze, C., & Evans, B. (1979). Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophysical Journal International, 59(3), 463–478. https://doi.org/10.1111/j.1365-246x.1979.tb02567.x
  • 10.1111/j.1365-246X.1979.tb02567.x
  • Cites

  • The mechanisms of creep in olivine. (1978). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 288(1350), 99–119. https://doi.org/10.1098/rsta.1978.0008
  • 10.1098/rsta.1978.0008
  • Cites

  • Hirth, G., & Kohlstedt, D. L. (1996). Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144(1–2), 93–108. https://doi.org/10.1016/0012-821x(96)00154-9
  • 10.1016/0012-821X(96)00154-9
  • Cites

  • Katayama, I., & Karato, S. (2008). Low-temperature, high-stress deformation of olivine under water-saturated conditions. Physics of the Earth and Planetary Interiors, 168(3–4), 125–133. https://doi.org/10.1016/j.pepi.2008.05.019
  • 10.1016/j.pepi.2008.05.019
  • Cites

  • Meeßen, C. (2017). VelocityConversion. GFZ Data Services. https://doi.org/10.5880/GFZ.6.1.2017.001
  • 10.5880/GFZ.6.1.2017.001
  • Cites

  • Ranalli, G., & Murphy, D. C. (1987). Rheological stratification of the lithosphere. Tectonophysics, 132(4), 281–295. https://doi.org/10.1016/0040-1951(87)90348-9
  • 10.1016/0040-1951(87)90348-9
  • Cites

  • Rodriguez Piceda, C., Scheck Wenderoth, M., Gomez Dacal, M. L., Bott, J., Prezzi, C. B., & Strecker, M. R. (2020). Lithospheric density structure of the southern Central Andes constrained by 3D data-integrative gravity modelling. International Journal of Earth Sciences, 110(7), 2333–2359. https://doi.org/10.1007/s00531-020-01962-1
  • 10.1007/s00531-020-01962-1
  • Cites

  • Rodriguez Piceda, C., Scheck-Wenderoth, M., Gomez Dacal, M. L., Bott, J., Prezzi, C., & Strecker, M. (2020). Lithospheric-scale 3D model of the Southern Central Andes [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.5.2020.001
  • 10.5880/GFZ.4.5.2020.001
  • References

  • Wilks, K. R., & Carter, N. L. (1990). Rheology of some continental lower crustal rocks. Tectonophysics, 182(1–2), 57–77. https://doi.org/10.1016/0040-1951(90)90342-6
  • 10.1016/0040-1951(90)90342-6
  • Cites

Contact
  • Rodriguez Piceda, Constanza
  • GFZ German Research Centre for Geosciences, Potsdam, Germany;
Citation Rodriguez Piceda, C., Scheck-Wenderoth, M., Cacace, M., Bott, J., & Strecker, M. (2021). 3D rheological model of the Southern Central Andes (Version 1.0) [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.5.2021.002
Spatial coordinates
  • eLong -64.3973
  • nLat -28.8655
  • sLat -38.8488
  • wLong -72.4543