References |
- Pilger, R. H. (2022). Radiometric Dates from the South American Andes and Adjacent Areas: A Compilation [Data set]. GRO.data. https://doi.org/10.25625/NGG0Q7
- 10.25625/NGG0Q7
- IsNewVersionOf
- PILGER, R. H. (1981). Plate reconstructions, aseismic ridges, and low-angle subduction beneath the Andes. Geological Society of America Bulletin, 92(7), 448. https://doi.org/10.1130/0016-7606(1981)92<448:praral>2.0.co;2
- 10.1130/0016-7606(1981)92<448:praral>2.0.co;2
- IsSupplementTo
- Pilger, R. H. (1984). Cenozoic plate kinematics, subduction and magmatism: South American Andes. Journal of the Geological Society, 141(5), 793–802. https://doi.org/10.1144/gsjgs.141.5.0793
- 10.1144/gsjgs.141.5.0793
- IsSupplementTo
- Adriasola, A. C., Thomson, S. N., Brix, M. R., Hervé, F., & Stöckhert, B. (2005). Postmagmatic cooling and late Cenozoic denudation of the North Patagonian Batholith in the Los Lagos region of Chile, 41°−42°15′S. International Journal of Earth Sciences, 95(3), 504–528. https://doi.org/10.1007/s00531-005-0027-9
- 10.1007/s00531-005-0027-9
- Cites
- Aguirre, L. (1988). Chemical mobility during low-grade metamorphism of a Jurassic lava flow: Río Grande Formation, Peru. Journal of South American Earth Sciences, 1(4), 343–361. https://doi.org/10.1016/0895-9811(88)90022-3
- 10.1016/0895-9811(88)90022-3
- Cites
- Alarcón, P., & Pinto, L. (2015). Neogene erosion of the Andean Cordillera in the flat-slab segment as indicated by petrography and whole-rock geochemistry from the Manantiales Foreland Basin (32°–32°30′S). Tectonophysics, 639, 1–22. https://doi.org/10.1016/j.tecto.2014.11.001
- 10.1016/j.tecto.2014.11.001
- Cites
- Albert, C., Farina, F., Lana, C., Stevens, G., Storey, C., Gerdes, A., & Dopico, C. M. (2016). Archean crustal evolution in the Southern São Francisco craton, Brazil: Constraints from U-Pb, Lu-Hf and O isotope analyses. Lithos, 266–267, 64–86. https://doi.org/10.1016/j.lithos.2016.09.029
- 10.1016/j.lithos.2016.09.029
- Cites
- Almeida, M. E., Macambira, M. J. B., & Oliveira, E. C. (2007). Geochemistry and zircon geochronology of the I-type high-K calc-alkaline and S-type granitoid rocks from southeastern Roraima, Brazil: Orosirian collisional magmatism evidence (1.97–1.96Ga) in central portion of Guyana Shield. Precambrian Research, 155(1–2), 69–97. https://doi.org/10.1016/j.precamres.2007.01.004
- 10.1016/j.precamres.2007.01.004
- Cites
- Alonso, R. N., Bookhagen, B., Carrapa, B., Coutand, I., Haschke, M., Hilley, G. E., Schoenbohm, L., Sobel, E. R., Strecker, M. R., Trauth, M. H., & Villanueva, A. (n.d.). Tectonics, Climate, and Landscape Evolution of the Southern Central Andes: the Argentine Puna Plateau and Adjacent Regions between 22 and 30°S. Frontiers in Earth Sciences, 265–283. https://doi.org/10.1007/978-3-540-48684-8_12
- 10.1007/978-3-540-48684-8_12
- Cites
- Álvarez, J., Mpodozis, C., Arriagada, C., Astini, R., Morata, D., Salazar, E., Valencia, V. A., & Vervoort, J. D. (2011). Detrital zircons from late Paleozoic accretionary complexes in north-central Chile (28°–32°S): Possible fingerprints of the Chilenia terrane. Journal of South American Earth Sciences, 32(4), 460–476. https://doi.org/10.1016/j.jsames.2011.06.002
- 10.1016/j.jsames.2011.06.002
- Cites
- Álvarez, J., Mpodozis, C., Blanco-Quintero, I., García-Casco, A., Arriagada, C., & Morata, D. (2013). U–Pb ages and metamorphic evolution of the La Pampa Gneisses: Implications for the evolution of the Chilenia Terrane and Permo-Triassic tectonics of north Central Chile. Journal of South American Earth Sciences, 47, 100–115. https://doi.org/10.1016/j.jsames.2013.07.001
- 10.1016/j.jsames.2013.07.001
- Cites
- André-Mayer, A.-S., Leroy, J., Bailly, L., Chauvet, A., Marcoux, E., Grancea, L., Llosa, F., & Rosas, J. (2002). Boiling and vertical mineralization zoning: a case study from the Apacheta low-sulfidation epithermal gold-silver deposit, southern Peru. Mineralium Deposita, 37(5), 452–464. https://doi.org/10.1007/s00126-001-0247-2
- 10.1007/s00126-001-0247-2
- Cites
- Andriessen, P. A. M., & Reutter, K.-J. (1994). K-Ar and Fission Track Mineral Age Determination of Igneous Rocks Related to Multiple Magmatic Arc Systems Along the 23°S Latitude of Chile and NW Argentina. Tectonics of the Southern Central Andes, 141–153. https://doi.org/10.1007/978-3-642-77353-2_10
- 10.1007/978-3-642-77353-2_10
- Cites
- Anma, R., Armstrong, R., Orihashi, Y., Ike, S., Shin, K.-C., Kon, Y., Komiya, T., Ota, T., Kagashima, S., & Shibuya, T. (2009). Are the Taitao granites formed due to subduction of the Chile ridge? Lithos, 113(1–2), 246–258. https://doi.org/10.1016/j.lithos.2009.05.018
- 10.1016/j.lithos.2009.05.018
- Cites
- ANMA, R., & ORIHASHI, Y. (2013). Shallow-depth melt eduction due to ridge subduction: LA-ICPMS U-Pb igneous and detrital zircon ages from the Chile Triple Junction and the Taitao Peninsula, Chilean Patagonia. GEOCHEMICAL JOURNAL, 47(2), 149–165. https://doi.org/10.2343/geochemj.2.0243
- 10.2343/geochemj.2.0243
- Cites
- Arancibia, G., Matthews, S. J., & Pérez de Arce, C. (2006). K–Ar and
40
Ar/
39
Ar geochronology of supergene processes in the Atacama Desert, Northern Chile: tectonic and climatic relations. Journal of the Geological Society, 163(1), 107–118. https://doi.org/10.1144/0016-764904-161
- 10.1144/0016-764904-161
- Cites
- Augustsson, C., & Bahlburg, H. (2003). Active or passive continental margin? Geochemical and Nd isotope constraints of metasediments in the backstop of a pre-Andean accretionary wedge in southernmost Chile (46°30′-48°30′S). Geological Society, London, Special Publications, 208(1), 253–268. https://doi.org/10.1144/gsl.sp.2003.208.01.12
- 10.1144/GSL.SP.2003.208.01.12
- Cites
- AUGUSTSSON, C., MÜNKER, C., BAHLBURG, H., & FANNING, C. M. (2006). Provenance of late Palaeozoic metasediments of the SW South American Gondwana margin: a combined U–Pb and Hf-isotope study of single detrital zircons. Journal of the Geological Society, 163(6), 983–995. https://doi.org/10.1144/0016-76492005-149
- 10.1144/0016-76492005-149
- Cites
- Avdievitch, N. N., Ehlers, T. A., & Glotzbach, C. (2018). Slow Long‐Term Exhumation of the West Central Andean Plate Boundary, Chile. Tectonics, 37(7), 2243–2267. Portico. https://doi.org/10.1029/2017tc004944
- 10.1029/2017TC004944
- Cites
|