Radiometric Dates from the South American Andes and Adjacent Areas: A Compilation - part 3 metamorphic rocks

Pilger, Rex H. Jr.;

2022 || GFZ Data Services

A compilation of 29,574 published radiometric dates for metamorphic rocks from the South American Andes and adjacent parts of South America have been tabulated for access by researchers via GEOROC Expert Datasets. The compilation exists as a spreadsheet for access via MS Excel, Google Sheets, and other spreadsheet applications. Initial igneous compilations were utilized in two publications by the author, Pilger (1981, 1984). The compilations have been added to in subsequent years with the metamorphic and sedimentary compilations separated in the last few years. Locations in latitude and longitude are largely taken from the original source, if provided, with UTM locations maintained and converted; in some cases, sample locations were digitized from electronic maps if coordinates were otherwise not available. Analytical results are not included to prevent the files from becoming too large. The existing compilation incorporates compilations by other workers in smaller regions of the Andes. References to original and compilation sources are included.

While I am updating reconstructions of the South American and Nazca/Farallon plates, incorporating recent studies in the three oceans, for comparison with the igneous dates for the past 80 m. y., it is hoped that the spreadsheets will be of value to other workers.

Reliability: In most cases the data have been copy/pasted from published or appendix tables. In a few cases, the location has been digitized from published maps; the (equatorial equidistant) maps were copied into Google Earth and positioned according to indicated coordinates, with locations digitized and copied/pasted into the spreadsheet. (It is possible that published maps are conventional Mercator-based, even if not so identified, rather than either equatorial equidistant or Universal Transverse Mercator; this can be a source of error in location. For UTMs, the errors should be minor.) Duplicates are largely recognized by equivalent IDs, dates, and uncertainties. Where primary sources have been accessed, duplicate data points in compilations are deleted. (Analytic data are NOT included.)

This compilation is part of a series. Companion compilations of radiometric dates from igneous and sedimentary rocks are available at https://doi.org/10.5880/digis.e.2023.005 and https://doi.org/10.5880/digis.e.2023.006, respectively.

Originally assigned keywords

Corresponding MSL vocabulary keywords

MSL enriched keywords

MSL enriched sub domains
  • geochemistry
Source http://dx.doi.org/10.5880/digis.e.2023.007
Source publisher GFZ Data Services
DOI 10.5880/digis.e.2023.007
Authors
Contributors
  • Pilger, Rex H. Jr.
  • ContactPerson

  • DIGIS Team
  • ContactPerson
  • University of Göttingen, Göttingen, Germany;
References
  • Pilger, R. H. (2022). Radiometric Dates from the South American Andes and Adjacent Areas: A Compilation [Data set]. GRO.data. https://doi.org/10.25625/NGG0Q7
  • 10.25625/NGG0Q7
  • IsNewVersionOf

  • PILGER, R. H. (1981). Plate reconstructions, aseismic ridges, and low-angle subduction beneath the Andes. Geological Society of America Bulletin, 92(7), 448. https://doi.org/10.1130/0016-7606(1981)92<448:praral>2.0.co;2
  • 10.1130/0016-7606(1981)92<448:praral>2.0.co;2
  • IsSupplementTo

  • Pilger, R. H. (1984). Cenozoic plate kinematics, subduction and magmatism: South American Andes. Journal of the Geological Society, 141(5), 793–802. https://doi.org/10.1144/gsjgs.141.5.0793
  • 10.1144/gsjgs.141.5.0793
  • IsSupplementTo

  • Adriasola, A. C., Thomson, S. N., Brix, M. R., Hervé, F., & Stöckhert, B. (2005). Postmagmatic cooling and late Cenozoic denudation of the North Patagonian Batholith in the Los Lagos region of Chile, 41°−42°15′S. International Journal of Earth Sciences, 95(3), 504–528. https://doi.org/10.1007/s00531-005-0027-9
  • 10.1007/s00531-005-0027-9
  • Cites

  • Aguirre, L. (1988). Chemical mobility during low-grade metamorphism of a Jurassic lava flow: Río Grande Formation, Peru. Journal of South American Earth Sciences, 1(4), 343–361. https://doi.org/10.1016/0895-9811(88)90022-3
  • 10.1016/0895-9811(88)90022-3
  • Cites

  • Alarcón, P., & Pinto, L. (2015). Neogene erosion of the Andean Cordillera in the flat-slab segment as indicated by petrography and whole-rock geochemistry from the Manantiales Foreland Basin (32°–32°30′S). Tectonophysics, 639, 1–22. https://doi.org/10.1016/j.tecto.2014.11.001
  • 10.1016/j.tecto.2014.11.001
  • Cites

  • Albert, C., Farina, F., Lana, C., Stevens, G., Storey, C., Gerdes, A., & Dopico, C. M. (2016). Archean crustal evolution in the Southern São Francisco craton, Brazil: Constraints from U-Pb, Lu-Hf and O isotope analyses. Lithos, 266–267, 64–86. https://doi.org/10.1016/j.lithos.2016.09.029
  • 10.1016/j.lithos.2016.09.029
  • Cites

  • Almeida, M. E., Macambira, M. J. B., & Oliveira, E. C. (2007). Geochemistry and zircon geochronology of the I-type high-K calc-alkaline and S-type granitoid rocks from southeastern Roraima, Brazil: Orosirian collisional magmatism evidence (1.97–1.96Ga) in central portion of Guyana Shield. Precambrian Research, 155(1–2), 69–97. https://doi.org/10.1016/j.precamres.2007.01.004
  • 10.1016/j.precamres.2007.01.004
  • Cites

  • Alonso, R. N., Bookhagen, B., Carrapa, B., Coutand, I., Haschke, M., Hilley, G. E., Schoenbohm, L., Sobel, E. R., Strecker, M. R., Trauth, M. H., & Villanueva, A. (n.d.). Tectonics, Climate, and Landscape Evolution of the Southern Central Andes: the Argentine Puna Plateau and Adjacent Regions between 22 and 30°S. Frontiers in Earth Sciences, 265–283. https://doi.org/10.1007/978-3-540-48684-8_12
  • 10.1007/978-3-540-48684-8_12
  • Cites

  • Álvarez, J., Mpodozis, C., Arriagada, C., Astini, R., Morata, D., Salazar, E., Valencia, V. A., & Vervoort, J. D. (2011). Detrital zircons from late Paleozoic accretionary complexes in north-central Chile (28°–32°S): Possible fingerprints of the Chilenia terrane. Journal of South American Earth Sciences, 32(4), 460–476. https://doi.org/10.1016/j.jsames.2011.06.002
  • 10.1016/j.jsames.2011.06.002
  • Cites

  • Álvarez, J., Mpodozis, C., Blanco-Quintero, I., García-Casco, A., Arriagada, C., & Morata, D. (2013). U–Pb ages and metamorphic evolution of the La Pampa Gneisses: Implications for the evolution of the Chilenia Terrane and Permo-Triassic tectonics of north Central Chile. Journal of South American Earth Sciences, 47, 100–115. https://doi.org/10.1016/j.jsames.2013.07.001
  • 10.1016/j.jsames.2013.07.001
  • Cites

  • André-Mayer, A.-S., Leroy, J., Bailly, L., Chauvet, A., Marcoux, E., Grancea, L., Llosa, F., & Rosas, J. (2002). Boiling and vertical mineralization zoning: a case study from the Apacheta low-sulfidation epithermal gold-silver deposit, southern Peru. Mineralium Deposita, 37(5), 452–464. https://doi.org/10.1007/s00126-001-0247-2
  • 10.1007/s00126-001-0247-2
  • Cites

  • Andriessen, P. A. M., & Reutter, K.-J. (1994). K-Ar and Fission Track Mineral Age Determination of Igneous Rocks Related to Multiple Magmatic Arc Systems Along the 23°S Latitude of Chile and NW Argentina. Tectonics of the Southern Central Andes, 141–153. https://doi.org/10.1007/978-3-642-77353-2_10
  • 10.1007/978-3-642-77353-2_10
  • Cites

  • Anma, R., Armstrong, R., Orihashi, Y., Ike, S., Shin, K.-C., Kon, Y., Komiya, T., Ota, T., Kagashima, S., & Shibuya, T. (2009). Are the Taitao granites formed due to subduction of the Chile ridge? Lithos, 113(1–2), 246–258. https://doi.org/10.1016/j.lithos.2009.05.018
  • 10.1016/j.lithos.2009.05.018
  • Cites

  • ANMA, R., & ORIHASHI, Y. (2013). Shallow-depth melt eduction due to ridge subduction: LA-ICPMS U-Pb igneous and detrital zircon ages from the Chile Triple Junction and the Taitao Peninsula, Chilean Patagonia. GEOCHEMICAL JOURNAL, 47(2), 149–165. https://doi.org/10.2343/geochemj.2.0243
  • 10.2343/geochemj.2.0243
  • Cites

  • Arancibia, G., Matthews, S. J., & Pérez de Arce, C. (2006). K–Ar and 40 Ar/ 39 Ar geochronology of supergene processes in the Atacama Desert, Northern Chile: tectonic and climatic relations. Journal of the Geological Society, 163(1), 107–118. https://doi.org/10.1144/0016-764904-161
  • 10.1144/0016-764904-161
  • Cites

  • Augustsson, C., & Bahlburg, H. (2003). Active or passive continental margin? Geochemical and Nd isotope constraints of metasediments in the backstop of a pre-Andean accretionary wedge in southernmost Chile (46°30′-48°30′S). Geological Society, London, Special Publications, 208(1), 253–268. https://doi.org/10.1144/gsl.sp.2003.208.01.12
  • 10.1144/GSL.SP.2003.208.01.12
  • Cites

  • AUGUSTSSON, C., MÜNKER, C., BAHLBURG, H., & FANNING, C. M. (2006). Provenance of late Palaeozoic metasediments of the SW South American Gondwana margin: a combined U–Pb and Hf-isotope study of single detrital zircons. Journal of the Geological Society, 163(6), 983–995. https://doi.org/10.1144/0016-76492005-149
  • 10.1144/0016-76492005-149
  • Cites

  • Avdievitch, N. N., Ehlers, T. A., & Glotzbach, C. (2018). Slow Long‐Term Exhumation of the West Central Andean Plate Boundary, Chile. Tectonics, 37(7), 2243–2267. Portico. https://doi.org/10.1029/2017tc004944
  • 10.1029/2017TC004944
  • Cites
Contact
  • DIGIS Team
  • University of Göttingen, Göttingen, Germany;

  • DIGIS Team
  • University of Göttingen, Göttingen, Germany;

  • DIGIS Team
  • University of Göttingen, Göttingen, Germany;
Citation Pilger, R. H. J. (2022). Radiometric Dates from the South American Andes and Adjacent Areas: A Compilation - part 3 metamorphic rocks [Data set]. GFZ Data Services. https://doi.org/10.5880/DIGIS.E.2023.007
Geo location(s)
  • Argentina, Plurinational State of Bolivia, Brazil, Chile, Colombia, Ecuador, Peru
Spatial coordinates
  • eLong -32.25
  • nLat 12
  • sLat -55.25
  • wLong -81.25