Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

Mechanical test data of quartz sand, garnet sand, gypsum powder (plaster), kaolin and sand-plaster mixtures used as granular analogue materials in geoscience laboratory experiments

Poppe, Sam | Holohan, Eoghan P. | Rudolf, Michael | Rosenau, Matthias | Galland, Olivier | Delcamp, Audray | Van Gompel, Gert | Buls, Nico | Soens, Bastien | Pohlenz, Andre | Mourgues, Régis | Kervyn, Matthieu

GFZ Data Services

(2021)

This dataset provides mechanical test data for quartz sand (“MAM1ST-300”, Sibelco, Mol, Belgium), gypsum powder (plaster; “Goldband”, Knauf), kaolin clay powder, garnet sand, and mixtures of quartz sand and gypsum powder, used at the Analogue Laboratory of the Department of Geography at the Vrije Universiteit Brussel, Brussels, Belgium, for simulating brittle rocks in the upper crust (Poppe et al., 2019). The measured properties are density ρ, tensile strength T0, shear strength σ, obtained by density measurements, ring-shear tests (RST; at Helmholtz Centre Potsdam GFZ, Germany), direct shear tests, traction tests (at University of Maine, Le Mans, France) and extension tests. The obtained tensile strengths and shear strengths reconstruct two-dimensional failure envelopes for each material. By fitting linear Coulomb and non-linear combined Griffith failure criteria to the characterised failure envelopes (Jaeger et al., 2007), the internal friction coefficient µC, Coulomb cohesion CC and Griffith cohesion CG are obtained. The influence of the material emplacement technique has been investigated in Poppe et al. (2021) to which this data set is supplementary, by repeat characterisation of the above physical parameters under three emplacement conditions, i.e. sieving, pouring (non-dried state) and compaction after pouring (oven-dried state). We find that densities of the materials and mixtures range from ~1600 kg.m³ (sieved) and ~1700 kg.m³ (compacted) for pure quartz sand to ~600 kg.m³ (poured) to ~900 kg.m³ (compacted) for pure plaster. Tensile strengths range from ~166 Pa (sand) to ~425 Pa (plaster). Velocity ring-shear tests on a 90 wt% quartz sand – 10 wt% plaster mixture show a minor shear rate-weakening of <2% per ten-fold increase in shear velocity. The materials show a behavior ranging from Mohr-Coulomb behavior for the materials with coarser grain size (sands) to combined Griffith-Mohr-Coulomb behavior for the powder materials (plaster, kaolin), with the sand-plaster mixtures occupying a spectrum between both end-members. Peak friction coefficients range from ~0.5 (sand) to ~0.6 (plaster) with a maximum of ~0.9 (80:20 wt% sand:plaster), peak Coulomb cohesions range from 13 Pa (sand) to 248 Pa (plaster), peak Griffith cohesions range from ~10 Pa (sand) to ~425 Pa (plaster).

Keywords


Originally assigned keywords
quartz sand
garnet sand
hemihydrate gypsum powder
kaolin clay powder
laboratory experiments
analogue materials
granular materials
mechanical tests
tensile strength
shear strength
internal friction
friction coefficient
Coulomb failure
Griffith failure
ring shear test
direct shear test
tensile test
extensional test
dilation
bulk density
volcano
faults
deformation
structural processes
sand
EARTH SCIENCE
TECTONIC LANDFORMSPROCESSES
SOLID EARTH
GEOMORPHIC LANDFORMSPROCESSES
VOLCANO
laboratory experiment
gypsum
geology
tectonics

Corresponding MSL vocabulary keywords
analogue modelling material
tensile strength
tensile strength
shear strength
shear strength
friction coefficient
frictional deformation
friction coefficient
conventional triaxial apparatus: direct shear
strain
strain
sand
gypsum
tectonic plate boundary

MSL enriched keywords
analogue modelling material
Measured property
mechanical strength
tensile strength
Measured property
mechanical strength
tensile strength
shear strength
shear strength
friction - controlled slip rate
friction coefficient
Inferred deformation behavior
deformation behaviour
frictional deformation
friction - controlled slip rate
friction coefficient
Apparatus
deformation testing
shear testing
conventional triaxial apparatus: direct shear
strain
strain
unconsolidated sediment
clastic sediment
sand
minerals
sulfate minerals
gypsum
tectonic plate boundary
silicate minerals
nesosilicates
garnet
tectosilicates
quartz
phyllosilicates
clay
clay
rotary shear apparatus
cohesion
brittle deformation
Apparatus
characterization of modelling material
frictional property determination
rotary shear apparatus
cohesion
Earth's structure
Earth crust
upper crust
Analyzed feature
grain size and configuration
grain size

MSL enriched sub domains i

rock and melt physics
analogue modelling of geologic processes
microscopy and tomography


Source publisher

GFZ Data Services


DOI

10.5880/fidgeo.2021.005


Authors

Poppe, Sam

0000-0002-8787-8590

Physical Geography, Department of Geography, Vrije Universiteit Brussel, Belgium; Laboratoire G-Time, Department of Geosciences, the Environment and Society, Université Libre de Bruxelles, Brussels, Belgium;

Holohan, Eoghan P.

0000-0002-5930-6712

UCD School of Earth Sciences, University College of Dublin, Ireland;

Rudolf, Michael

0000-0002-5077-5221

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Rosenau, Matthias

0000-0003-1134-5381

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Galland, Olivier

0000-0002-8087-428X

Physics of Geological Processes, Njord Center, University of Oslo, Norway ;

Delcamp, Audray

0000-0001-8249-8575

Physical Geography, Department of Geography, Vrije Universiteit Brussel, Belgium;

Van Gompel, Gert

0000-0002-9380-7756

Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Belgium;

Buls, Nico

0000-0003-2830-6899

Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Belgium;

Soens, Bastien

0000-0002-7695-6629

Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Belgium ; Laboratoire G-Time, Department of Geosciences, the Environment and Society, Université Libre de Bruxelles, Brussels, Belgium;

Pohlenz, Andre

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Mourgues, Régis

Géosciences Le Mans, Le Mans Université, France;

Kervyn, Matthieu

0000-0002-4966-3468

Physical Geography, Department of Geography, Vrije Universiteit Brussel, Belgium;


Contributers

Poppe, Sam

ContactPerson

0000-0002-8787-8590

Physical Geography, Department of Geography, Vrije Universiteit Brussel, Belgium; Laboratoire G-Time, Department of Geosciences, the Environment and Society, Université Libre de Bruxelles, Brussels, Belgium;

Poppe, Sam

DataCollector

0000-0002-8787-8590

Physical Geography, Department of Geography, Vrije Universiteit Brussel, Belgium; Laboratoire G-Time, Department of Geosciences, the Environment and Society, Université Libre de Bruxelles, Brussels, Belgium;

Holohan, Eoghan P.

Supervisor

0000-0002-5930-6712

UCD School of Earth Sciences, University College of Dublin, Ireland;

Rudolf, Michael

DataCollector

0000-0002-5077-5221

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Rosenau, Matthias

Supervisor

0000-0003-1134-5381

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Galland, Olivier

RelatedPerson

0000-0002-8087-428X

Physics of Geological Processes, Njord Center, University of Oslo, Norway ;

Delcamp, Audray

RelatedPerson

0000-0001-8249-8575

Physical Geography, Department of Geography, Vrije Universiteit Brussel, Belgium;

Van Gompel, Gert

DataCollector

0000-0002-9380-7756

Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Belgium;

Buls, Nico

DataCollector

0000-0003-2830-6899

Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Belgium;

Soens, Bastien

DataCollector

0000-0002-7695-6629

Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Belgium ; Laboratoire G-Time, Department of Geosciences, the Environment and Society, Université Libre de Bruxelles, Brussels, Belgium;

Pohlenz, Andre

DataCollector

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Mourgues, Régis

RelatedPerson

Géosciences Le Mans, Le Mans Université, France;

Kervyn, Matthieu

Supervisor

0000-0002-4966-3468

Physical Geography, Department of Geography, Vrije Universiteit Brussel, Belgium;

Poppe, Sam

ContactPerson

Laboratoire G-Time, Department of Geosciences, the Environment and Society, Université Libre de Bruxelles, Brussels, Belgium;


References

DOI of paper when available

IsSupplementTo

Poppe, S., Holohan, E. P., Rudolf, M., Rosenau, M., Galland, O., Delcamp, A., & Kervyn, M. (2022). Mechanical properties of quartz sand and gypsum powder (plaster) mixtures: implications for laboratory model analogues for the Earth’s upper crust. https://doi.org/10.31223/x58c93

10.31223/X58C93

IsSupplementTo

Grosse, P., Poppe, S., Delcamp, A., van Wyk de Vries, B., & Kervyn, M. (2020). Volcano growth versus deformation by strike-slip faults: Morphometric characterization through analogue modelling. Tectonophysics, 781, 228411. https://doi.org/10.1016/j.tecto.2020.228411

10.1016/j.tecto.2020.228411

IsSupplementTo

Poppe, S., Holohan, E. P., Galland, O., Buls, N., Van Gompel, G., Keelson, B., Tournigand, P.-Y., Brancart, J., Hollis, D., Nila, A., & Kervyn, M. (2019). An Inside Perspective on Magma Intrusion: Quantifying 3D Displacement and Strain in Laboratory Experiments by Dynamic X-Ray Computed Tomography. Frontiers in Earth Science, 7. https://doi.org/10.3389/feart.2019.00062

10.3389/feart.2019.00062

IsSupplementTo

Abdelmalak, M. M., Bulois, C., Mourgues, R., Galland, O., Legland, J.-B., & Gruber, C. (2016). Description of new dry granular materials of variable cohesion and friction coefficient: Implications for laboratory modeling of the brittle crust. Tectonophysics, 684, 39–51. https://doi.org/10.1016/j.tecto.2016.03.003

10.1016/j.tecto.2016.03.003

Cites

Adam, J., Klinkmüller, M., Schreurs, G., & Wieneke, B. (2013). Quantitative 3D strain analysis in analogue experiments simulating tectonic deformation: Integration of X-ray computed tomography and digital volume correlation techniques. Journal of Structural Geology, 55, 127–149. https://doi.org/10.1016/j.jsg.2013.07.011

10.1016/j.jsg.2013.07.011

Cites

Colletta, B., Letouzey, J., Pinedo, R., Ballard, J. F., & Balé, P. (1991). Computerized X-ray tomography analysis of sandbox models: Examples of thin-skinned thrust systems. Geology, 19(11), 1063. https://doi.org/10.1130/0091-7613(1991)019<1063:cxrtao>2.3.co;2

10.1130/0091-7613(1991)019<1063:cxrtao>2.3.co;2

Cites

Galland, O., Cobbold, P. R., Hallot, E., de Bremond d’Ars, J., & Delavaud, G. (2006). Use of vegetable oil and silica powder for scale modelling of magmatic intrusion in a deforming brittle crust. Earth and Planetary Science Letters, 243(3–4), 786–804. https://doi.org/10.1016/j.epsl.2006.01.014

10.1016/j.epsl.2006.01.014

Cites

Klinkmüller, M., Schreurs, G., Rosenau, M., & Kemnitz, H. (2016). Properties of granular analogue model materials: A community wide survey. Tectonophysics, 684, 23–38. https://doi.org/10.1016/j.tecto.2016.01.017

10.1016/j.tecto.2016.01.017

Cites

Lohrmann, J., Kukowski, N., Adam, J., & Oncken, O. (2003). The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges. Journal of Structural Geology, 25(10), 1691–1711. https://doi.org/10.1016/s0191-8141(03)00005-1

10.1016/S0191-8141(03)00005-1

Cites

Mourgues, R., & Cobbold, P. R. (2003). Some tectonic consequences of fluid overpressures and seepage forces as demonstrated by sandbox modelling. Tectonophysics, 376(1–2), 75–97. https://doi.org/10.1016/s0040-1951(03)00348-2

10.1016/S0040-1951(03)00348-2

Cites

Panien, M., Schreurs, G., & Pfiffner, A. (2006). Mechanical behaviour of granular materials used in analogue modelling: insights from grain characterisation, ring-shear tests and analogue experiments. Journal of Structural Geology, 28(9), 1710–1724. https://doi.org/10.1016/j.jsg.2006.05.004

10.1016/j.jsg.2006.05.004

Cites

Ritter, M. C., Leever, K., Rosenau, M., & Oncken, O. (2016). Scaling the sandbox—Mechanical (dis) similarities of granular materials and brittle rock. Journal of Geophysical Research: Solid Earth, 121(9), 6863–6879. Portico. https://doi.org/10.1002/2016jb012915

10.1002/2016JB012915

Cites

Ritter, M. C., Rosenau, M., & Oncken, O. (2018). Growing Faults in the Lab: Insights Into the Scale Dependence of the Fault Zone Evolution Process. Tectonics, 37(1), 140–153. Portico. https://doi.org/10.1002/2017tc004787

10.1002/2017TC004787

Cites

Rudolf, M., &amp; Warsitzka, M. (2021). <i>RST Evaluation - Scripts for analysing shear experiments from the Schulze RST.pc01 ring shear tester</i>. GFZ Data Services. https://doi.org/10.5880/GFZ.4.1.2021.001

10.5880/GFZ.4.1.2021.001

Cites

van Gent, H. W., Holland, M., Urai, J. L., & Loosveld, R. (2010). Evolution of fault zones in carbonates with mechanical stratigraphy – Insights from scale models using layered cohesive powder. Journal of Structural Geology, 32(9), 1375–1391. https://doi.org/10.1016/j.jsg.2009.05.006

10.1016/j.jsg.2009.05.006

Cites

Warsitzka, M., Ge, Z., Schönebeck, J.-M., Pohlenz, A., &amp; Kukowski, N. (2019). <i>Ring-shear test data of foam glass beads used for analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam and the Institute of Geosciences, Friedrich Schiller University Jena</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.1.2019.002

10.5880/GFZ.4.1.2019.002

Cites


Contact

Poppe, Sam

Laboratoire G-Time, Department of Geosciences, the Environment and Society, Université Libre de Bruxelles, Brussels, Belgium;

Poppe, Sam

Laboratoire G-Time, Department of Geosciences, the Environment and Society, Université Libre de Bruxelles, Brussels, Belgium;


Citiation

Poppe, S., Holohan, E. P., Rudolf, M., Rosenau, M., Galland, O., Delcamp, A., Van Gompel, G., Buls, N., Soens, B., Pohlenz, A., Mourgues, R., & Kervyn, M. (2021). Mechanical test data of quartz sand, garnet sand, gypsum powder (plaster), kaolin and sand-plaster mixtures used as granular analogue materials in geoscience laboratory experiments [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2021.005