Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

Decollement depth of Active thrust faults in Italy

Petricca, Patrizio

GFZ Data Services

(2019)

Based on available geological and geophysical data, the depth of the basal thrust decollement for compressional areas of Italy is collected. The proposed dataset is useful to a large scientific and risk-management audience (e.g., input for numerical modelling of regional studies, or providing the maximum depth of brittle crust useful to constraints maximum expected magnitudes for the study region). The dataset is presented as a long table (2019-028_Petricca_Table1.txt) in tab-separated text format. The table contains three columns indicating 1) the longitude, 2) the latitude and 3) the depth (in km) values of the maximum thrust faulting depth. Obtained depths range between 1 and 17 km. Conceptual model for the definition of the active thrust decollement depths (see Petricca et al., 2019): to define the basal decollement depth of active thrust faults are selected 75 published geological and seismic sections plus two maps of basal decollement (Table 1 in Petricca et al., 2019 for references). The study domain is gridded with nodes every 10x10 km. At each node coinciding with a seismic or geological section, the punctual value of the basal decollement depth with respect to the sea level is assigned. For the Calabrian Arc and part of Sicily, we used values picked from depth maps. Depth values at empty nodes are assigned by interpolation criteria using the minimum curvature method (Briggs, 1974), generalized by Smith and Wessel (1990) including the tension factor (i.e., the smoothing grade - 0.5 in this case). Further, the trend of the obtained isodepth contours is recalibrated following the composite sources (i.e. the maximum depth of seismogenic sources given in the DISS database - see Basili et al., 2008). Depth correction is obtained adding/subtracting the topography/bathymetry elevation/depth at nodes using values interpolated from ETOPO1 Global Relief Model. Due to the fact that the brittle-ductile transition (BDT) depth is possibly and locally shallower than the basal thrust depth (zbt), further correction is necessary. For this purpose, the BDT depths from Petricca et al. (2015) is compared with the basal thrust depths zbt from this study to select at each node of the computation grid the shallower value. The majority of the studied areas show a basal thrust depth (zmax) shallower than the BDT. An exception occurs offshore in the southern Tyrrhenian Sea, Sicily, where the BDT depth (10-12 km) is considerably shallower than the basal thrust depth (zmax<30 km). Limited portions of the northern Apennines and the part of the Calabrian arc close to the coast show comparable depths between the basal thrust (zmax) and BDT (i.e., 14-17 km).

Keywords


Originally assigned keywords
Thrust fault earthquakes Maximum faulting depth Italian seismicity
TECTONICS

Corresponding MSL vocabulary keywords
tectonic plate boundary

MSL enriched keywords
tectonic plate boundary
tectonic deformation structure
tectonic fault
thrust fault
Inferred deformation behavior
deformation behaviour
brittle-ductile deformation
Phanerozoic
Cenozoic
Quaternary
Pleistocene
Calabrian

MSL enriched sub domains i

rock and melt physics


Source publisher

GFZ Data Services


DOI

10.5880/fidgeo.2019.028


Authors

Petricca, Patrizio

0000-0003-1186-4296

Sapienza Università di Roma;


Contributers

Petricca, Patrizio

ContactPerson

0000-0003-1186-4296

Sapienza Università di Roma;

Petricca, Patrizio

DataCollector

0000-0003-1186-4296

Sapienza Università di Roma;

Petricca, Patrizio

DataCurator

0000-0003-1186-4296

Sapienza Università di Roma;

Petricca, Patrizio

DataManager

0000-0003-1186-4296

Sapienza Università di Roma;


References

Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano, S., Tiberti, M. M., & Boschi, E. (2008). The Database of Individual Seismogenic Sources (DISS), version 3: Summarizing 20 years of research on Italy’s earthquake geology. Tectonophysics, 453(1–4), 20–43. https://doi.org/10.1016/j.tecto.2007.04.014

10.1016/j.tecto.2007.04.014

Cites

Petricca, P., Barba, S., Carminati, E., Doglioni, C., & Riguzzi, F. (2015). Graviquakes in Italy. Tectonophysics, 656, 202–214. https://doi.org/10.1016/j.tecto.2015.07.001

10.1016/j.tecto.2015.07.001

Cites

Smith, W. H. F., & Wessel, P. (1990). Gridding with continuous curvature splines in tension. GEOPHYSICS, 55(3), 293–305. https://doi.org/10.1190/1.1442837

10.1190/1.1442837

Cites

Briggs, I. C. (1974). MACHINE CONTOURING USING MINIMUM CURVATURE. GEOPHYSICS, 39(1), 39–48. https://doi.org/10.1190/1.1440410

10.1190/1.1440410

Cites

Petricca, P., Carminati, E., & Doglioni, C. (2019). The Decollement Depth of Active Thrust Faults in Italy: Implications on Potential Earthquake Magnitude. Tectonics, 38(11), 3990–4009. Portico. https://doi.org/10.1029/2019tc005641

10.1029/2019TC005641

IsSupplementTo

NOAA National Geophysical Data Center. (2009). <i>ETOPO1 1 Arc-Minute Global Relief Model</i> [Data set]. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5C8276M

10.7289/V5C8276M

Cites


Contact

Petricca, Patrizio

Sapienza Università di Roma;


Citiation

Petricca, P. (2019). Decollement depth of Active thrust faults in Italy [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2019.028


Geo location(s)

Italian peninsula