Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.
Data Publication
Ring shearspan> test data of feldspar sand and quartz sand used in the Tectonic Laboratory (TecLab) at Utrecht University for experimental Earth Science applications
Willingshofer, Ernst | Sokoutis, Dimitrios | Beekman, Fred | Schönebeck, Jan-Michael | Warsitzka, Michael | Rosenau, Matthias
GFZ Data Services
(2018)
This dataset provides friction data from ring-shear tests (RST) on feldspar sand and quartz sand, which are used to simulate brittle behaviour in crust- and lithosphere-scale analogue experiments at the Tectonic Laboratory (TecLab), Utrecht University (NL) (Willingshofer et al., 2005; Willingshofer & Sokoutis, 2009; Athmer et al., 2010; Luth et al., 2010; Fernández-Lozano et al., 2011; Leever et al., 2011; Sokoutis & Willingshofer, 2011; Fernández-Lozano et al., 2012; Luth et al., 2013; Munteanu et al., 2013; Willingshofer et al., 2013; Munteanu et al., 2014; Calignano et al., 2015a, b; Ortner et al., 2015; Gabrielsen et al., 2016; Calignano et al., 2017; van Gelder et al., 2017; Wang et al., 2017; Beniest et al., 2018 ). The materials have been characterized by means of internal friction coefficients µ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam. According to our analysis both materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the feldspar sand are µP = 0.68, µD = 0.55, and µR = 0.61, respectively. Friction coefficients of the quartz sand are µP = 0.63, µD = 0.48, and µR = 0.52, respectively. Cohesions of the feldspar sand and the quartz sand are in the order of few tens of Pa. A minor rate-weakening of 1% per ten-fold rate change is evident for the feldspar sand, whereas the quartz sand shows a significant rate weakening of ~5%. Further information about materical characteristics, measurement procedures, sample preparation, the RST (Ring-shear test) and VST (Velocity stepping test) procedure, as well as the analysed method is proviced in the data description file. The list of files explains the file and folder structure of the data set.
Keywords
Originally assigned keywords
Corresponding MSL vocabulary keywords
MSL enriched keywords
MSL original sub domains
MSL enriched sub domains i
Source publisher
GFZ Data Services
DOI
10.5880/fidgeo.2018.072
Authors
Willingshofer, Ernst
0000-0002-9119-5557
Department of Tectonics, Faculty of Earth Sciences, Utrecht University, Utrecht, The Netherlands
Sokoutis, Dimitrios
0000-0003-0523-9785
Department of Tectonics, Faculty of Earth Sciences, Utrecht University, Utrecht, The Netherlands
Beekman, Fred
0000-0002-8455-999X
Department of Tectonics, Faculty of Earth Sciences, Utrecht University, Utrecht, The Netherlands
Schönebeck, Jan-Michael
GFZ German Research Centre for Geosciences, Potsdam, Germany
Warsitzka, Michael
0000-0003-1774-5888
GFZ German Research Centre for Geosciences, Potsdam, Germany
Rosenau, Matthias
0000-0003-1134-5381
GFZ German Research Centre for Geosciences, Potsdam, Germany
References
Willingshofer, E., Sokoutis, D., & Burg, J.-P. (2005). Lithospheric-scale analogue modelling of collision zones with a pre-existing weak zone. Geological Society, London, Special Publications, 243(1), 277–294. https://doi.org/10.1144/gsl.sp.2005.243.01.18
10.1144/GSL.SP.2005.243.01.18
IsSupplementTo
Ritter, M. C., Leever, K., Rosenau, M., & Oncken, O. (2016). Scaling the sandbox—Mechanical (dis) similarities of granular materials and brittle rock. Journal of Geophysical Research: Solid Earth, 121(9), 6863–6879. Portico. https://doi.org/10.1002/2016jb012915
10.1002/2016JB012915
References
Santimano, T., Rosenau, M., & Oncken, O. (2015). Intrinsic versus extrinsic variability of analogue sand-box experiments – Insights from statistical analysis of repeated accretionary sand wedge experiments. Journal of Structural Geology, 75, 80–100. https://doi.org/10.1016/j.jsg.2015.03.008
10.1016/j.jsg.2015.03.008
References
Schulze, D. (2003). Time‐ and Velocity‐Dependent Properties of Powders Effecting Slip‐Stick Oscillations. Chemical Engineering & Technology, 26(10), 1047–1051. Portico. https://doi.org/10.1002/ceat.200303112
10.1002/ceat.200303112
References
References
Klinkmüller, M., Schreurs, G., Rosenau, M., & Kemnitz, H. (2016). Properties of granular analogue model materials: A community wide survey. Tectonophysics, 684, 23–38. https://doi.org/10.1016/j.tecto.2016.01.017
10.1016/j.tecto.2016.01.017
References
ATHMER, W., GROENENBERG, R. M., LUTHI, S. M., DONSELAAR, M. E., SOKOUTIS, D., & WILLINGSHOFER, E. (2009). Relay ramps as pathways for turbidity currents: a study combining analogue sandbox experiments and numerical flow simulations. Sedimentology, 57(3), 806–823. https://doi.org/10.1111/j.1365-3091.2009.01120.x
10.1111/j.1365-3091.2009.01120.x
References
Beniest, A., Willingshofer, E., Sokoutis, D., & Sassi, W. (2018). Extending Continental Lithosphere With Lateral Strength Variations: Effects on Deformation Localization and Margin Geometries. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00148
10.3389/feart.2018.00148
References
Calignano, E., Sokoutis, D., Willingshofer, E., Brun, J.-P., Gueydan, F., & Cloetingh, S. (2017). Oblique contractional reactivation of inherited heterogeneities: Cause for arcuate orogens. Tectonics, 36(3), 542–558. Portico. https://doi.org/10.1002/2016tc004424
10.1002/2016TC004424
References
Calignano, E., Sokoutis, D., Willingshofer, E., Gueydan, F., & Cloetingh, S. (2015). Asymmetric vs. symmetric deep lithospheric architecture of intra-plate continental orogens. Earth and Planetary Science Letters, 424, 38–50. https://doi.org/10.1016/j.epsl.2015.05.022
10.1016/j.epsl.2015.05.022
References
Calignano, E., Sokoutis, D., Willingshofer, E., Gueydan, F., & Cloetingh, S. (2015). Strain localization at the margins of strong lithospheric domains: Insights from analog models. Tectonics, 34(3), 396–412. Portico. https://doi.org/10.1002/2014tc003756
10.1002/2014TC003756
References
Fernández‐Lozano, J., Sokoutis, D., Willingshofer, E., Cloetingh, S., & De Vicente, G. (2011). Cenozoic deformation of Iberia: A model for intraplate mountain building and basin development based on analogue modeling. Tectonics, 30(1). Portico. https://doi.org/10.1029/2010tc002719
10.1029/2010TC002719
References
Fernández‐Lozano, J., Sokoutis, D., Willingshofer, E., Dombrádi, E., Martín, A. M., De Vicente, G., & Cloetingh, S. (2012). Integrated gravity and topography analysis in analog models: Intraplate deformation in Iberia. Tectonics, 31(6). Portico. https://doi.org/10.1029/2012tc003122
10.1029/2012TC003122
References
Gabrielsen, R. H., Sokoutis, D., Willingshofer, E., & Faleide, J. I. (2016). Fault linkage across weak layers during extension: an experimental approach with reference to the Hoop Fault Complex of the SW Barents Sea. Petroleum Geoscience, 22(2), 123–135. https://doi.org/10.1144/petgeo2015-029
10.1144/petgeo2015-029
References
Leever, K. A., Gabrielsen, R. H., Sokoutis, D., & Willingshofer, E. (2011). The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high‐resolution digital image analysis. Tectonics, 30(2). Portico. https://doi.org/10.1029/2010tc002823
10.1029/2010TC002823
References
Luth, S., Willingshofer, E., ter Borgh, M., Sokoutis, D., van Otterloo, J., & Versteeg, A. (2013). Kinematic analysis and analogue modelling of the Passeier- and Jaufen faults: implications for crustal indentation in the Eastern Alps. International Journal of Earth Sciences, 102(4), 1071–1090. https://doi.org/10.1007/s00531-012-0846-4
10.1007/s00531-012-0846-4
References
Munteanu, I., Willingshofer, E., Matenco, L., Sokoutis, D., & Cloetingh, S. (2014). Far-field contractional polarity changes in models and nature. Earth and Planetary Science Letters, 395, 101–115. https://doi.org/10.1016/j.epsl.2014.03.036
10.1016/j.epsl.2014.03.036
References
Munteanu, I., Willingshofer, E., Sokoutis, D., Matenco, L., Dinu, C., & Cloetingh, S. (2013). Transfer of deformation in back-arc basins with a laterally variable rheology: Constraints from analogue modelling of the Balkanides–Western Black Sea inversion. Tectonophysics, 602, 223–236. https://doi.org/10.1016/j.tecto.2013.03.009
10.1016/j.tecto.2013.03.009
References
Ortner, H., Kositz, A., Willingshofer, E., & Sokoutis, D. (2015). Geometry of growth strata in a transpressive fold belt in field and analogue model: Gosau Group at Muttekopf, Northern Calcareous Alps, Austria. Basin Research, 28(6), 731–751. Portico. https://doi.org/10.1111/bre.12129
10.1111/bre.12129
References
Sokoutis, D., & Willingshofer, E. (2011). Decoupling during continental collision and intra-plate deformation. Earth and Planetary Science Letters, 305(3–4), 435–444. https://doi.org/10.1016/j.epsl.2011.03.028
10.1016/j.epsl.2011.03.028
References
van Gelder, I. E., Willingshofer, E., Sokoutis, D., & Cloetingh, S. A. P. L. (2017). The interplay between subduction and lateral extrusion: A case study for the European Eastern Alps based on analogue models. Earth and Planetary Science Letters, 472, 82–94. https://doi.org/10.1016/j.epsl.2017.05.012
10.1016/j.epsl.2017.05.012
References
Wang, X., Luthi, S. M., Hodgson, D. M., Sokoutis, D., Willingshofer, E., & Groenenberg, R. M. (2016). Turbidite stacking patterns in salt‐controlled minibasins: Insights from integrated analogue models and numerical fluid flow simulations. Sedimentology, 64(2), 530–552. Portico. https://doi.org/10.1111/sed.12313
10.1111/sed.12313
References
Willingshofer, E., & Sokoutis, D. (2009). Decoupling along plate boundaries: Key variable controlling the mode of deformation and the geometry of collisional mountain belts. Geology, 37(1), 39–42. https://doi.org/10.1130/g25321a.1
10.1130/G25321A.1
References
Willingshofer, E., Sokoutis, D., & Burg, J.-P. (2005). Lithospheric-scale analogue modelling of collision zones with a pre-existing weak zone. Geological Society, London, Special Publications, 243(1), 277–294. https://doi.org/10.1144/gsl.sp.2005.243.01.18
10.1144/GSL.SP.2005.243.01.18
References
Willingshofer, E., Sokoutis, D., Luth, S. W., Beekman, F., & Cloetingh, S. (2013). Subduction and deformation of the continental lithosphere in response to plate and crust-mantle coupling. Geology, 41(12), 1239–1242. https://doi.org/10.1130/g34815.1
10.1130/G34815.1
References
Contact
Rosenau, Matthias
rosen@gfz-potsdam.de
GFZ German Research Centre for Geosciences, Potsdam, Germany
Citiation
Willingshofer, E., Sokoutis, D., Beekman, F., Schönebeck, J.-M., Warsitzka, M., & Rosenau, M. (2018). Ring shear test data of feldspar sand and quartz sand used in the Tectonic Laboratory (TecLab) at Utrecht University for experimental Earth Science applications [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2018.072