Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

Ring shearspan> test data of feldspar sand and quartz sand used in the Tectonic Laboratory (TecLab) at Utrecht University for experimental Earth Science applications

Willingshofer, Ernst | Sokoutis, Dimitrios | Beekman, Fred | Schönebeck, Jan-Michael | Warsitzka, Michael | Rosenau, Matthias

GFZ Data Services

(2018)

This dataset provides friction data from ring-shear tests (RST) on feldspar sand and quartz sand, which are used to simulate brittle behaviour in crust- and lithosphere-scale analogue experiments at the Tectonic Laboratory (TecLab), Utrecht University (NL) (Willingshofer et al., 2005; Willingshofer & Sokoutis, 2009; Athmer et al., 2010; Luth et al., 2010; Fernández-Lozano et al., 2011; Leever et al., 2011; Sokoutis & Willingshofer, 2011; Fernández-Lozano et al., 2012; Luth et al., 2013; Munteanu et al., 2013; Willingshofer et al., 2013; Munteanu et al., 2014; Calignano et al., 2015a, b; Ortner et al., 2015; Gabrielsen et al., 2016; Calignano et al., 2017; van Gelder et al., 2017; Wang et al., 2017; Beniest et al., 2018 ). The materials have been characterized by means of internal friction coefficients µ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam. According to our analysis both materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the feldspar sand are µP = 0.68, µD = 0.55, and µR = 0.61, respectively. Friction coefficients of the quartz sand are µP = 0.63, µD = 0.48, and µR = 0.52, respectively. Cohesions of the feldspar sand and the quartz sand are in the order of few tens of Pa. A minor rate-weakening of 1% per ten-fold rate change is evident for the feldspar sand, whereas the quartz sand shows a significant rate weakening of ~5%. Further information about materical characteristics, measurement procedures, sample preparation, the RST (Ring-shear test) and VST (Velocity stepping test) procedure, as well as the analysed method is proviced in the data description file. The list of files explains the file and folder structure of the data set.

Keywords


Originally assigned keywords
EPOS
Multiscale laboratories
analogue models of geologic processes
property data of analogue modelling materials
software tools
TECTONICS
CALIBRATIONVALIDATION
upper continental crustal setting
fracturing
fault
tectonic and structural features
Quartz Sand
Iron Powder
Ringshear tester
Force sensor
Friction coefficient
Cohesion

Corresponding MSL vocabulary keywords
tectonic plate boundary
upper crust
iron powder
friction coefficient
frictional deformation
friction coefficient
cohesion
cohesion

MSL enriched keywords
tectonic plate boundary
Earth's structure
Earth crust
upper crust
analogue modelling material
granular modelling material
metalic powders
iron powder
Measured property
friction - controlled slip rate
friction coefficient
Inferred deformation behavior
deformation behaviour
frictional deformation
Measured property
friction - controlled slip rate
friction coefficient
cohesion
cohesion
minerals
silicate minerals
tectosilicates
quartz
unconsolidated sediment
clastic sediment
sand
Apparatus
deformation testing
shear testing
rotary shear apparatus
Apparatus
characterization of modelling material
frictional property determination
rotary shear apparatus
brittle deformation
lithosphere

MSL original sub domains

analogue modelling of geologic processes

MSL enriched sub domains i

analogue modelling of geologic processes
rock and melt physics


Source publisher

GFZ Data Services


DOI

10.5880/fidgeo.2018.072


Authors

Willingshofer, Ernst

0000-0002-9119-5557

Department of Tectonics, Faculty of Earth Sciences, Utrecht University, Utrecht, The Netherlands

Sokoutis, Dimitrios

0000-0003-0523-9785

Department of Tectonics, Faculty of Earth Sciences, Utrecht University, Utrecht, The Netherlands

Beekman, Fred

0000-0002-8455-999X

Department of Tectonics, Faculty of Earth Sciences, Utrecht University, Utrecht, The Netherlands

Schönebeck, Jan-Michael

GFZ German Research Centre for Geosciences, Potsdam, Germany

Warsitzka, Michael

0000-0003-1774-5888

GFZ German Research Centre for Geosciences, Potsdam, Germany

Rosenau, Matthias

0000-0003-1134-5381

GFZ German Research Centre for Geosciences, Potsdam, Germany


References

Willingshofer, E., Sokoutis, D., & Burg, J.-P. (2005). Lithospheric-scale analogue modelling of collision zones with a pre-existing weak zone. Geological Society, London, Special Publications, 243(1), 277–294. https://doi.org/10.1144/gsl.sp.2005.243.01.18

10.1144/GSL.SP.2005.243.01.18

IsSupplementTo

Ritter, M. C., Leever, K., Rosenau, M., & Oncken, O. (2016). Scaling the sandbox—Mechanical (dis) similarities of granular materials and brittle rock. Journal of Geophysical Research: Solid Earth, 121(9), 6863–6879. Portico. https://doi.org/10.1002/2016jb012915

10.1002/2016JB012915

References

Santimano, T., Rosenau, M., & Oncken, O. (2015). Intrinsic versus extrinsic variability of analogue sand-box experiments – Insights from statistical analysis of repeated accretionary sand wedge experiments. Journal of Structural Geology, 75, 80–100. https://doi.org/10.1016/j.jsg.2015.03.008

10.1016/j.jsg.2015.03.008

References

Schulze, D. (2003). Time‐ and Velocity‐Dependent Properties of Powders Effecting Slip‐Stick Oscillations. Chemical Engineering & Technology, 26(10), 1047–1051. Portico. https://doi.org/10.1002/ceat.200303112

10.1002/ceat.200303112

References

References

Klinkmüller, M., Schreurs, G., Rosenau, M., & Kemnitz, H. (2016). Properties of granular analogue model materials: A community wide survey. Tectonophysics, 684, 23–38. https://doi.org/10.1016/j.tecto.2016.01.017

10.1016/j.tecto.2016.01.017

References

ATHMER, W., GROENENBERG, R. M., LUTHI, S. M., DONSELAAR, M. E., SOKOUTIS, D., & WILLINGSHOFER, E. (2009). Relay ramps as pathways for turbidity currents: a study combining analogue sandbox experiments and numerical flow simulations. Sedimentology, 57(3), 806–823. https://doi.org/10.1111/j.1365-3091.2009.01120.x

10.1111/j.1365-3091.2009.01120.x

References

Beniest, A., Willingshofer, E., Sokoutis, D., & Sassi, W. (2018). Extending Continental Lithosphere With Lateral Strength Variations: Effects on Deformation Localization and Margin Geometries. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00148

10.3389/feart.2018.00148

References

Calignano, E., Sokoutis, D., Willingshofer, E., Brun, J.-P., Gueydan, F., & Cloetingh, S. (2017). Oblique contractional reactivation of inherited heterogeneities: Cause for arcuate orogens. Tectonics, 36(3), 542–558. Portico. https://doi.org/10.1002/2016tc004424

10.1002/2016TC004424

References

Calignano, E., Sokoutis, D., Willingshofer, E., Gueydan, F., & Cloetingh, S. (2015). Asymmetric vs. symmetric deep lithospheric architecture of intra-plate continental orogens. Earth and Planetary Science Letters, 424, 38–50. https://doi.org/10.1016/j.epsl.2015.05.022

10.1016/j.epsl.2015.05.022

References

Calignano, E., Sokoutis, D., Willingshofer, E., Gueydan, F., & Cloetingh, S. (2015). Strain localization at the margins of strong lithospheric domains: Insights from analog models. Tectonics, 34(3), 396–412. Portico. https://doi.org/10.1002/2014tc003756

10.1002/2014TC003756

References

Fernández‐Lozano, J., Sokoutis, D., Willingshofer, E., Cloetingh, S., & De Vicente, G. (2011). Cenozoic deformation of Iberia: A model for intraplate mountain building and basin development based on analogue modeling. Tectonics, 30(1). Portico. https://doi.org/10.1029/2010tc002719

10.1029/2010TC002719

References

Fernández‐Lozano, J., Sokoutis, D., Willingshofer, E., Dombrádi, E., Martín, A. M., De Vicente, G., & Cloetingh, S. (2012). Integrated gravity and topography analysis in analog models: Intraplate deformation in Iberia. Tectonics, 31(6). Portico. https://doi.org/10.1029/2012tc003122

10.1029/2012TC003122

References

Gabrielsen, R. H., Sokoutis, D., Willingshofer, E., & Faleide, J. I. (2016). Fault linkage across weak layers during extension: an experimental approach with reference to the Hoop Fault Complex of the SW Barents Sea. Petroleum Geoscience, 22(2), 123–135. https://doi.org/10.1144/petgeo2015-029

10.1144/petgeo2015-029

References

Leever, K. A., Gabrielsen, R. H., Sokoutis, D., & Willingshofer, E. (2011). The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high‐resolution digital image analysis. Tectonics, 30(2). Portico. https://doi.org/10.1029/2010tc002823

10.1029/2010TC002823

References

Luth, S., Willingshofer, E., ter Borgh, M., Sokoutis, D., van Otterloo, J., & Versteeg, A. (2013). Kinematic analysis and analogue modelling of the Passeier- and Jaufen faults: implications for crustal indentation in the Eastern Alps. International Journal of Earth Sciences, 102(4), 1071–1090. https://doi.org/10.1007/s00531-012-0846-4

10.1007/s00531-012-0846-4

References

Munteanu, I., Willingshofer, E., Matenco, L., Sokoutis, D., & Cloetingh, S. (2014). Far-field contractional polarity changes in models and nature. Earth and Planetary Science Letters, 395, 101–115. https://doi.org/10.1016/j.epsl.2014.03.036

10.1016/j.epsl.2014.03.036

References

Munteanu, I., Willingshofer, E., Sokoutis, D., Matenco, L., Dinu, C., & Cloetingh, S. (2013). Transfer of deformation in back-arc basins with a laterally variable rheology: Constraints from analogue modelling of the Balkanides–Western Black Sea inversion. Tectonophysics, 602, 223–236. https://doi.org/10.1016/j.tecto.2013.03.009

10.1016/j.tecto.2013.03.009

References

Ortner, H., Kositz, A., Willingshofer, E., & Sokoutis, D. (2015). Geometry of growth strata in a transpressive fold belt in field and analogue model: Gosau Group at Muttekopf, Northern Calcareous Alps, Austria. Basin Research, 28(6), 731–751. Portico. https://doi.org/10.1111/bre.12129

10.1111/bre.12129

References

Sokoutis, D., & Willingshofer, E. (2011). Decoupling during continental collision and intra-plate deformation. Earth and Planetary Science Letters, 305(3–4), 435–444. https://doi.org/10.1016/j.epsl.2011.03.028

10.1016/j.epsl.2011.03.028

References

van Gelder, I. E., Willingshofer, E., Sokoutis, D., & Cloetingh, S. A. P. L. (2017). The interplay between subduction and lateral extrusion: A case study for the European Eastern Alps based on analogue models. Earth and Planetary Science Letters, 472, 82–94. https://doi.org/10.1016/j.epsl.2017.05.012

10.1016/j.epsl.2017.05.012

References

Wang, X., Luthi, S. M., Hodgson, D. M., Sokoutis, D., Willingshofer, E., & Groenenberg, R. M. (2016). Turbidite stacking patterns in salt‐controlled minibasins: Insights from integrated analogue models and numerical fluid flow simulations. Sedimentology, 64(2), 530–552. Portico. https://doi.org/10.1111/sed.12313

10.1111/sed.12313

References

Willingshofer, E., & Sokoutis, D. (2009). Decoupling along plate boundaries: Key variable controlling the mode of deformation and the geometry of collisional mountain belts. Geology, 37(1), 39–42. https://doi.org/10.1130/g25321a.1

10.1130/G25321A.1

References

Willingshofer, E., Sokoutis, D., & Burg, J.-P. (2005). Lithospheric-scale analogue modelling of collision zones with a pre-existing weak zone. Geological Society, London, Special Publications, 243(1), 277–294. https://doi.org/10.1144/gsl.sp.2005.243.01.18

10.1144/GSL.SP.2005.243.01.18

References

Willingshofer, E., Sokoutis, D., Luth, S. W., Beekman, F., & Cloetingh, S. (2013). Subduction and deformation of the continental lithosphere in response to plate and crust-mantle coupling. Geology, 41(12), 1239–1242. https://doi.org/10.1130/g34815.1

10.1130/G34815.1

References


Contact

Rosenau, Matthias

rosen@gfz-potsdam.de

GFZ German Research Centre for Geosciences, Potsdam, Germany


Citiation

Willingshofer, E., Sokoutis, D., Beekman, F., Schönebeck, J.-M., Warsitzka, M., & Rosenau, M. (2018). Ring shear test data of feldspar sand and quartz sand used in the Tectonic Laboratory (TecLab) at Utrecht University for experimental Earth Science applications [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2018.072