Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.
Data Publication
Denudation and weathering rates of carbonate landscapes from meteoric 10Be/9Be ratios
Wittmann, Hella | Bouchez, Julien | Calmels, Damien | Gaillardet, Jerome | Frick, Daniel | Stroncik, Nicole | ASTER Team | von Blanckenburg, Friedhelm
GFZ Data Services
(2024)
We provide sample information and geochemical data for obtaining erosion, weathering, and denudation rates from a framework based cosmogenic meteoric 10Be versus stable 9Be (10Be/9Be) ratios. We modified this published silicate framework (von Blanckenburg et al., 2012) to carbonate landscapes, and performed thorough ground-truthing and testing of assumptions, as this is the first application of the framework for carbonate lithologies. The most important methodological findings are as follows: 1) We amended a sequential extraction step specific for solubilizing total carbonate-bound Be using acetic acid. As this extraction cannot distinguish between secondary and primary carbonate, we employed carbon stable isotopes to obtain the fraction of Be associated with secondary carbonate. We find that >90% of total carbonate-bound Be is bound to secondary carbonate, meaning that distinguishing between secondary and primary carbonate and employing carbon stable isotopes may not be necessary. 2) Using radiogenic strontium isotope ratios we found that about a third of the 9Be contained in secondary carbonate is derived from the dissolution of silicate phases, likely clastic impurities such as clays. These silicate phases also adsorb meteoric 10Be during weathering. The method is thus applicable to pure limestone as well as mixed carbonate-siliciclastic lithologies. 3) Total 9Be concentrations in bedrock are heterogeneous in the Jura, and are potentially controlled by the amount of silicate impurities contained in limestone. Yet the average 9Beparent in summed carbonate- and silicate-bound fractions (0.07 ug/g) is about 9 times lower than values from existing rock databases. In limestones studies, 9Beparent must be thus determined case-by-case on local bedrock. 4) The analysis of partition coefficients Kd for 10Be and 9Be, respectively, and very similar 10Be/9Be ratios show that dissolved Be has equilibrated between reactive (amorphous and crystalline Fe-oxides) and secondary carbonate phases. Secondary carbonate phases are thus part of the reactive Be pool in limestone settings. 5) As in previous studies in silicate lithologies 10Be and 9Be concentrations show pronounced differences between soil and sediment samples that we attribute to grain size dependence and sorting. The 10Be/9Be ratios however cover a remarkably narrow range for all samples, resulting a in narrow range in denudation rates. 6) The fraction of 9Be released by weathering and partitioned into the secondary reactive or dissolved phase serves as a Be-specific proxy for the degree of weathering. 7) The atmospheric depositional flux of 10Be estimated for the Jura mountains from concentrations of dissolved and particulate 10Be and river gauging is about 80% of estimates from independent global GCM-based distribution maps. The GCM estimates thus provide sufficient accuracy. From application of these new principles, weathering and erosion in the French Jura Mountains can be described as follows: The proportion of weathering in total denudation W/D is >0.9, due to the high purity of the limestone that almost completely dissolved except for a small silicate mineral fraction that, however, carries 50% of the bedrock’s 9Be. Resulting 10Be/9Be-derived denudation rates are on average 300 t/km2/yr for soils and 580 t/km2/yr for river sediments. The soil-derived values agree well with previous estimates from gauging data despite their entirely different (decadal vs. millennial) integration time scales. That sediment-derived denudation rates exceed those from soil we attribute to a 30-60% contribution from subsurface bedrock weathering. On a global scale, our data provides the first cosmogenic-based denudation rates for the precipitation (MAP) range of 1200 to 1700 mm/yr under a temperate climate and dense vegetation cover. Previous millennial-scale denudation rates from in situ-36Cl in calcite from less vegetated sites do not exceed 250 t/km2/yr in this precipitation range. With 500-600 t/km2/yr our denudation rates peak at MAP of 1200-1300 mm/yr, and then show a trend of decreasing D with increasing MAP.
Keywords
Originally assigned keywords
Corresponding MSL vocabulary keywords
MSL enriched keywords
MSL enriched sub domains i
Source publisher
GFZ Data Services
DOI
10.5880/gfz.3.3.2024.001
Authors
Wittmann, Hella
0000-0002-1252-7059
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Bouchez, Julien
0000-0003-4832-1615
Université de Paris, Institut de physique du globe de Paris, CNRS, Paris, France;
Calmels, Damien
Université Paris-Saclay, Laboratoire GEOPS, CNRS, Orsay, France;
Gaillardet, Jerome
0000-0001-7982-1159
Université de Paris, Institut de physique du globe de Paris, CNRS, Paris, France;
Frick, Daniel
0000-0002-8530-3064
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Stroncik, Nicole
0000-0003-4647-5928
GFZ German Research Centre for Geosciences, Potsdam, Germany;
ASTER Team
Aix-Marseille Univ., CNRS, IRD, INRA, Coll France, CEREGE, Technopôle de l’Environnement Arbois-Méditerranée, Aix-en-Provence, France;
von Blanckenburg, Friedhelm
0000-0002-2964-717X
GFZ German Research Centre for Geosciences, Potsdam, Germany; Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany;
Contributers
Wittmann, Hella
ContactPerson
0000-0002-1252-7059
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Bouchez, Julien
Other
0000-0003-4832-1615
Université de Paris, Institut de physique du globe de Paris, CNRS, Paris, France;
Calmels, Damien
Other
Université Paris-Saclay, Laboratoire GEOPS, CNRS, Orsay, France;
Gaillardet, Jerome
Other
0000-0001-7982-1159
Université de Paris, Institut de physique du globe de Paris, CNRS, Paris, France;
Frick, Daniel
Other
0000-0002-8530-3064
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Stroncik, Nicole
Other
0000-0003-4647-5928
GFZ German Research Centre for Geosciences, Potsdam, Germany;
ASTER Team
Other
Aix-Marseille Univ., CNRS, IRD, INRA, Coll France, CEREGE, Technopôle de l’Environnement Arbois-Méditerranée, Aix-en-Provence, France;
von Blanckenburg, Friedhelm
Other
0000-0002-2964-717X
GFZ German Research Centre for Geosciences, Potsdam, Germany; Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany;
HELGES – Helmholtz-Laboratory for the Geochemistry of the Earth Surface
HostingInstitution
GFZ German Research Centre for Geosciences, Potsdam, Germany;
HELGES – Cosmogenic Nuclides Sample Preparation Lab
HostingInstitution
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Wittmann, Hella
ContactPerson
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Wittmann, Hella
ContactPerson
GFZ German Research Centre for Geosciences, Potsdam, Germany;
References
Wittmann, H., Bouchez, J., Calmels, D., Gaillardet, J., Frick, D. A., Stroncik, N., & von Blanckenburg, F. (2024). Denudation and Weathering Rates of Carbonate Landscapes From Meteoric 10Be/9Be Ratios. Journal of Geophysical Research: Earth Surface, 129(9). Portico. https://doi.org/10.1029/2024jf007638
10.1029/2024JF007638
IsSupplementTo
Assayag, N., Jézéquel, D., Ader, M., Viollier, E., Michard, G., Prévot, F., & Agrinier, P. (2008). Hydrological budget, carbon sources and biogeochemical processes in Lac Pavin (France): Constraints from δ18O of water and δ13C of dissolved inorganic carbon. Applied Geochemistry, 23(10), 2800–2816. https://doi.org/10.1016/j.apgeochem.2008.04.015
10.1016/j.apgeochem.2008.04.015
Cites
Bickle, M. J., Tipper, E., Galy, A., Chapman, H., & Harris, N. (2015). On discrimination between carbonate and silicate inputs to Himalayan rivers. American Journal of Science, 315(2), 120–166. https://doi.org/10.2475/02.2015.02
10.2475/02.2015.02
Cites
Braucher, R., Guillou, V., Bourlès, D. L., Arnold, M., Aumaître, G., Keddadouche, K., & Nottoli, E. (2015). Preparation of ASTER in-house 10Be/9Be standard solutions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 361, 335–340. https://doi.org/10.1016/j.nimb.2015.06.012
10.1016/j.nimb.2015.06.012
Cites
Hajj, F., Poszwa, A., Bouchez, J., & Guérold, F. (2017). Radiogenic and “stable” strontium isotopes in provenance studies: A review and first results on archaeological wood from shipwrecks. Journal of Archaeological Science, 86, 24–49. https://doi.org/10.1016/j.jas.2017.09.005
10.1016/j.jas.2017.09.005
Cites
Klein, M. G., Gottdang, A., Mous, D. J. W., Bourlès, D. L., Arnold, M., Hamelin, B., Aumaître, G., Braucher, R., Merchel, S., & Chauvet, F. (2008). Performance of the HVE 5MV AMS system at CEREGE using an absorber foil for isobar suppression. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(8), 1828–1832. https://doi.org/10.1016/j.nimb.2007.11.077
10.1016/j.nimb.2007.11.077
Cites
Plummer, L. N., & Busenberg, E. (1982). The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochimica et Cosmochimica Acta, 46(6), 1011–1040. https://doi.org/10.1016/0016-7037(82)90056-4
10.1016/0016-7037(82)90056-4
Cites
Romanek, C. S., Grossman, E. L., & Morse, J. W. (1992). Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta, 56(1), 419–430. https://doi.org/10.1016/0016-7037(92)90142-6
10.1016/0016-7037(92)90142-6
Cites
von Blanckenburg, F., Bouchez, J., & Wittmann, H. (2012). Earth surface erosion and weathering from the 10Be (meteoric)/9Be ratio. Earth and Planetary Science Letters, 351–352, 295–305. https://doi.org/10.1016/j.epsl.2012.07.022
10.1016/j.epsl.2012.07.022
Cites
Von Blanckenburg, F., Wittmann, H., & Schuessler, J. A. (2016). HELGES: Helmholtz Laboratory for the Geochemistry of the Earth Surface. Journal of Large-Scale Research Facilities JLSRF, 2, A84. https://doi.org/10.17815/jlsrf-2-141
10.17815/jlsrf-2-141
Cites
Yang, Y., Lang, Y.-C., Xu, S., Liu, C.-Q., Cui, L.-F., Freeman, S. P. H. T., & Wilcken, K. M. (2020). Combined unsteady denudation and climatic gradient factors constrain carbonate landscape evolution: New insights from in situ cosmogenic 36Cl. Quaternary Geochronology, 58, 101075. https://doi.org/10.1016/j.quageo.2020.101075
10.1016/j.quageo.2020.101075
Cites
Zhang, J., Quay, P. D., & Wilbur, D. O. (1995). Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochimica et Cosmochimica Acta, 59(1), 107–114. https://doi.org/10.1016/0016-7037(95)91550-d
10.1016/0016-7037(95)91550-D
Cites
von Blanckenburg, F. (2024). <i>IGSN GFHWO002Q (JU1706bR02) Specimen: (rock:bedrock sedimentary) from Saine spring2 (France)</i>. GFZ Data Services. https://doi.org/10.60510/GFHWO002Q
10.60510/GFHWO002Q
IsDerivedFrom
Frings, P. (2024). <i>IGSN GFHWO0000 (JU1704S03) Specimen: (soil:soil) from Foret de la Joux - Road2 (France)</i>. GFZ Data Services. https://doi.org/10.60510/GFHWO0000
10.60510/GFHWO0000
IsDerivedFrom
Wittmann-Oelze, H. (2024). <i>IGSN GFHWO000Y (JU1709aS01) Specimen: (soil:soil) from Between GrandBief and Dahon1 (France)</i>. GFZ Data Services. https://doi.org/10.60510/GFHWO000Y
10.60510/GFHWO000Y
IsDerivedFrom
von, F., , Damien, Tesmer, M., & Schlegel, J. (2024). <i>IGSN GFHWO000Z (JU1709aW01) Specimen: (water:other fluid) from Dahon/Epenoy-Spring2 (France)</i>. GFZ Data Services. https://doi.org/10.60510/GFHWO000Z
10.60510/GFHWO000Z
IsDerivedFrom
Henehan, M., Tesmer, M., & von, F. (2024). <i>IGSN GFHWO0010 (JU1709S01) Specimen: (soil:soil) from Dahon/Epenoy-Spring3 (France)</i>. GFZ Data Services. https://doi.org/10.60510/GFHWO0010
10.60510/GFHWO0010
IsDerivedFrom
Wittmann-Oelze, H. (2024). <i>IGSN GFHWO0011 (JU1701W02) Specimen: (water:other fluid) from Dard spring1 (France)</i>. GFZ Data Services. https://doi.org/10.60510/GFHWO0011
10.60510/GFHWO0011
IsDerivedFrom
Cogez, A. (2024). <i>IGSN GFHWO0012 (JU1702P02) Specimen: (sediment:riverbank) from Dard spring1 (France)</i>. GFZ Data Services. https://doi.org/10.60510/GFHWO0012
10.60510/GFHWO0012
IsDerivedFrom
Contact
Wittmann, Hella
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Wittmann, Hella
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Wittmann, Hella
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Citiation
Wittmann, H., Bouchez, J., Calmels, D., Gaillardet, J., Frick, D., Stroncik, N., ASTER Team, & von Blanckenburg, F. (2024). Denudation and weathering rates of carbonate landscapes from meteoric 10Be/9Be ratios [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.3.3.2024.001