Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

GlobaLID – Global Lead Isotope Database (Version 12/2023)

Westner, Katrin J. | Rose, Thomas | Klein, Sabine | Hsu, Yiu-Kang | Becerra, María Florencia | Nezafati, Nima | Renson, Virginie | Stephens, Jay

GFZ Data Services

(2023)

This dataset is a continuously growing collection of lead isotope reference data. Lead isotopes are an established method to reconstruct the raw material provenance of archaeological objects. They are typically applied to artefacts made of copper, lead, silver, and their alloys. However, also the raw ma- terial provenance of other materials such as glass, pigments and pottery was already investigated us- ing lead isotopes. To successfully reconstruct the origin of the raw material, lead isotope signatures from as many as possible suitable raw material occurrences must be known. In the past, large-scaled research projects were carried out to characterise ore deposits especially in the Mediterranean area and Western Eu- rope. However, many of these data are dispersed in the literature and were published in scientific articles or monographs. Consequently, each researcher or at least each research group had to build their own up-to-date database of reference data from the literature. To overcome these restrictions, to facilitate work with lead isotope reference data and particularly to make the data FAIR, i.e., finda- ble, accessible, interoperable and reusable (Wilkinson et al. 2016), these published data are compiled and transferred into a uniform layout. They are further enhanced with additional metadata to facili- tate their use in raw material provenance studies. Currently, the database is restricted to ores and minerals as these are the most relevant materials for provenance studies of ancient metals. Future updates will include hitherto uncovered regions but also additional data from countries already present. Slag and other metallurgical (by-) products from ancient sites in close vicinity to ore deposits generally are a genuine representation of the ores uti- lised in historic times. As such, they are highly relevant for provenance studies and an extension to these materials is therefore planned. GlobaLID is a representation of the collective work of researchers on Pb isotope studies. As such, the database is seen as a community engagement project that invites scientists all over the world to be- come active contributors of GlobaLID. The initiators of the database dedicate their effort to the con- tinuation and maintenance of the database but only the support of the whole community will allow a rapid and successful growth of GlobaLID.

Keywords


Originally assigned keywords
raw material provenance
isotope
lead
copper
silver
ISOTOPE RATIOS
ISOTOPES
METALS
METALS AGE DETERMINATIONS
METALS VERTICALGEOGRAPHIC DISTRIBUTION
ICPMS
MCICPMS
metal smelting
nonferrous metal industry
nonferrous metal
resource utilisation
extraction
mining

Corresponding MSL vocabulary keywords
copper
copper
silver
inductively coupled plasma-mass spectrometer
multicollector-inductively coupled plasma-mass spectrometer

MSL enriched keywords
minerals
chemical elements
copper
measured property
copper
silver
equipment
mass spectrometer
inductively coupled plasma-mass spectrometer
multicollector-inductively coupled plasma-mass spectrometer

MSL enriched sub domains i

geochemistry


Source publisher

GFZ Data Services


DOI

10.5880/fidgeo.2023.043


Authors

Westner, Katrin J.

0000-0001-5529-1165

Forschungsbereich Archäometallurgie, Deutsches Bergbau-Museum Bochum, Bochum, Germany;

Rose, Thomas

0000-0002-8186-3566

Goethe-Universität Frankfurt, Institut für Geowissenschaften, Frankfurt, Germany;

Klein, Sabine

0000-0002-3939-4428

Forschungsbereich Archäometallurgie, Deutsches Bergbau-Museum Bochum, Bochum, Germany; FIERCE, Frankfurt Isotope &Element Research Center, Goethe Universität, Frankfurt am Main, Germany; Institut für Archäologische Wissenschaften, Ruhr-Universität Bochum, Bochum, Germany;

Hsu, Yiu-Kang

0000-0002-2439-4863

Forschungsbereich Archäometallurgie, Deutsches Bergbau-Museum Bochum, Bochum, Germany;

Becerra, María Florencia

CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) - División Arqueología, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina;

Nezafati, Nima

0000-0002-5806-343X

Forschungsbereich Archäometallurgie, Deutsches Bergbau-Museum Bochum, Bochum, Germany;

Renson, Virginie

Archaeometry Laboratory, Research Reactor Center, University of Missouri, Columbia, MO, USA;

Stephens, Jay

Archaeometry Laboratory, Research Reactor Center, University of Missouri, Columbia, MO, USA; School of Anthropology, University of Arizona, Tucson, AZ, USA;


Contributers

Klein, Sabine

ProjectLeader

0000-0002-3939-4428

Forschungsbereich Archäometallurgie, Deutsches Bergbau-Museum Bochum, Bochum, Germany; FIERCE, Frankfurt Isotope &Element Research Center, Goethe Universität, Frankfurt am Main, Germany; Institut für Archäologische Wissenschaften, Ruhr-Universität Bochum, Bochum, Germany;

GlobaLID Core Team

ContactPerson

Forschungsbereich Archäometallurgie, Leibniz-Forschungsmuseum für Georessourcen/Deutsches Bergbau-Museum Bochum, Germany;

Fischer-Lechner, Sabine

DataCollector

Forschungsbereich Archäometallurgie, Leibniz-Forschungsmuseum für Georessourcen/Deutsches Bergbau-Museum Bochum, Germany;

Killick, David

DataCollector

School of Anthropology, University of Arizona, Tucson, AZ, USA;

Pryce, T. O.

DataCollector

Centre National de la Recherche Scientifique, UMR 7065 Institut de Recherche sur les ArchéoMATériaux, Université Paris-Saclay & CEA/CNRS UMR 3685 NIMBE, 91191 Gif-sur-Yvette, France;

GlobaLID Core Team

ContactPerson

Forschungsbereich Archäometallurgie, Leibniz-Forschungsmuseum für Georessourcen/Deutsches Bergbau-Museum Bochum, Germany;


References

Cites

ALBARÈDE, F., DESAULTY, A. ‐M., & BLICHERT‐TOFT, J. (2011). A GEOLOGICAL PERSPECTIVE ON THE USE OF Pb ISOTOPES IN ARCHAEOMETRY. Archaeometry, 54(5), 853–867. Portico. https://doi.org/10.1111/j.1475-4754.2011.00653.x

10.1111/j.1475-4754.2011.00653.x

Cites

Albarede, F., & Martine, J. (1984). Unscrambling the lead model ages. Geochimica et Cosmochimica Acta, 48(1), 207–212. https://doi.org/10.1016/0016-7037(84)90364-8

10.1016/0016-7037(84)90364-8

Cites

Cumming, G. L., & Richards, J. R. (1975). Ore lead isotope ratios in a continuously changing earth. Earth and Planetary Science Letters, 28(2), 155–171. https://doi.org/10.1016/0012-821x(75)90223-x

10.1016/0012-821X(75)90223-X

Cites

Galer, S. J. G. (1998). Practical Application of Lead Triple Spiking for Correction of Instrumental Mass Discrimination. Mineralogical Magazine, 62A(1), 491–492. https://doi.org/10.1180/minmag.1998.62a.1.260

10.1180/minmag.1998.62a.1.260

Cites

Goldmann, A., Brennecka, G., Noordmann, J., Weyer, S., & Wadhwa, M. (2015). The uranium isotopic composition of the Earth and the Solar System. Geochimica et Cosmochimica Acta, 148, 145–158. https://doi.org/10.1016/j.gca.2014.09.008

10.1016/j.gca.2014.09.008

Cites

Haest, M., Schneider, J., Cloquet, C., Latruwe, K., Vanhaecke, F., & Muchez, P. (2010). Pb isotopic constraints on the formation of the Dikulushi Cu–Pb–Zn–Ag mineralisation, Kundelungu Plateau (Democratic Republic of Congo). Mineralium Deposita, 45(4), 393–410. https://doi.org/10.1007/s00126-010-0279-6

10.1007/s00126-010-0279-6

Cites

McFarlane, C., Soltani Dehnavi, A., & Lentz, D. (2016). Pb-Isotopic Study of Galena by LA-Q-ICP-MS: Testing a New Methodology with Applications to Base-Metal Sulphide Deposits. Minerals, 6(3), 96. https://doi.org/10.3390/min6030096

10.3390/min6030096

Cites

Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2), 207–221. https://doi.org/10.1016/0012-821x(75)90088-6

10.1016/0012-821X(75)90088-6

Cites

White, W. M., Albarède, F., & Télouk, P. (2000). High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chemical Geology, 167(3–4), 257–270. https://doi.org/10.1016/s0009-2541(99)00182-5

10.1016/S0009-2541(99)00182-5

Cites

Asael, D., Matthews, A., Bar-Matthews, M., Harlavan, Y., & Segal, I. (2012). Tracking redox controls and sources of sedimentary mineralization using copper and lead isotopes. Chemical Geology, 310–311, 23–35. https://doi.org/10.1016/j.chemgeo.2012.03.021

10.1016/j.chemgeo.2012.03.021

IsDerivedFrom

BARNES, I. L., SHIELDS, W. R., MURPHY, T. J., & BRILL, R. H. (1974). Isotopic Analysis of Laurion Lead Ores. Archaeological Chemistry, 1–10. https://doi.org/10.1021/ba-1974-0138.ch001

10.1021/ba-1974-0138.ch001

IsDerivedFrom

Baron, S., Tămaş, C. G., Cauuet, B., & Munoz, M. (2011). Lead isotope analyses of gold–silver ores from Roşia Montană (Romania): a first step of a metal provenance study of Roman mining activity in Alburnus Maior (Roman Dacia). Journal of Archaeological Science, 38(5), 1090–1100. https://doi.org/10.1016/j.jas.2010.12.004

10.1016/j.jas.2010.12.004

IsDerivedFrom

Barton, J. M., Blaine, J. L., Doig, R., & Byron, C. L. (1994). The geological setting and style of copper mineralization at the Bushman group of deposits, northeastern Botswana. Journal of African Earth Sciences, 18(2), 87–97. https://doi.org/10.1016/0899-5362(94)90022-1

10.1016/0899-5362(94)90022-1

IsDerivedFrom

Begemann, F., Hauptmann, A., Schmitt‐Strecker, S., & Weisgerber, G. (2010). Lead isotope and chemical signature of copper from Oman and its occurrence in Mesopotamia and sites on the Arabian Gulf coast. Arabian Archaeology and Epigraphy, 21(2), 135–169. Portico. https://doi.org/10.1111/j.1600-0471.2010.00327.x

10.1111/j.1600-0471.2010.00327.x

IsDerivedFrom

Begemann, F., Schmitt-Strecker, S., Pernicka, E., & Schiavo, F. L. (2001). Chemical composition and lead isotopy of copper and bronze from Nuragic Sardinia. European Journal of Archaeology, 4(1), 43–85. https://doi.org/10.1179/eja.2001.4.1.43

10.1179/eja.2001.4.1.43

IsDerivedFrom

BEGEMANN, F., & SCHMITT-STRECKER, S. (2009). Über das frühe Kupfer Mesopotamiens [JB]. Iranica Antiqua, 0, 1–45. https://doi.org/10.2143/IA.44.0.2034374

10.2143/IA.44.0.2034374

IsDerivedFrom

Bird, G., Brewer, P. A., Macklin, M. G., Nikolova, M., Kotsev, T., Mollov, M., & Swain, C. (2010). Pb isotope evidence for contaminant-metal dispersal in an international river system: The lower Danube catchment, Eastern Europe. Applied Geochemistry, 25(7), 1070–1084. https://doi.org/10.1016/j.apgeochem.2010.04.012

10.1016/j.apgeochem.2010.04.012

IsDerivedFrom

Bolhar, R., Whitehouse, M. J., Milani, L., Magalhães, N., Golding, S. D., Bybee, G., LeBras, L., & Bekker, A. (2020). Atmospheric S and lithospheric Pb in sulphides from the 2.06 Ga Phalaborwa phoscorite-carbonatite Complex, South Africa. Earth and Planetary Science Letters, 530, 115939. https://doi.org/10.1016/j.epsl.2019.115939

10.1016/j.epsl.2019.115939

IsDerivedFrom


Contact

GlobaLID Core Team

Forschungsbereich Archäometallurgie, Leibniz-Forschungsmuseum für Georessourcen/Deutsches Bergbau-Museum Bochum, Germany;

GlobaLID Core Team

Forschungsbereich Archäometallurgie, Leibniz-Forschungsmuseum für Georessourcen/Deutsches Bergbau-Museum Bochum, Germany;


Citiation

Westner, K. J., Rose, T., Klein, S., Hsu, Y.-K., Becerra, M. F., Nezafati, N., Renson, V., & Stephens, J. (2023). GlobaLID – Global Lead Isotope Database (Version 12/2023) (Version 1.1) [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2023.043