Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.
Data Publication
GlobaLID – Global Lead Isotope Database (Version 12/2023)
Westner, Katrin J. | Rose, Thomas | Klein, Sabine | Hsu, Yiu-Kang | Becerra, María Florencia | Nezafati, Nima | Renson, Virginie | Stephens, Jay
GFZ Data Services
(2023)
This dataset is a continuously growing collection of lead isotope reference data. Lead isotopes are an established method to reconstruct the raw material provenance of archaeological objects. They are typically applied to artefacts made of copper, lead, silver, and their alloys. However, also the raw ma- terial provenance of other materials such as glass, pigments and pottery was already investigated us- ing lead isotopes. To successfully reconstruct the origin of the raw material, lead isotope signatures from as many as possible suitable raw material occurrences must be known. In the past, large-scaled research projects were carried out to characterise ore deposits especially in the Mediterranean area and Western Eu- rope. However, many of these data are dispersed in the literature and were published in scientific articles or monographs. Consequently, each researcher or at least each research group had to build their own up-to-date database of reference data from the literature. To overcome these restrictions, to facilitate work with lead isotope reference data and particularly to make the data FAIR, i.e., finda- ble, accessible, interoperable and reusable (Wilkinson et al. 2016), these published data are compiled and transferred into a uniform layout. They are further enhanced with additional metadata to facili- tate their use in raw material provenance studies. Currently, the database is restricted to ores and minerals as these are the most relevant materials for provenance studies of ancient metals. Future updates will include hitherto uncovered regions but also additional data from countries already present. Slag and other metallurgical (by-) products from ancient sites in close vicinity to ore deposits generally are a genuine representation of the ores uti- lised in historic times. As such, they are highly relevant for provenance studies and an extension to these materials is therefore planned. GlobaLID is a representation of the collective work of researchers on Pb isotope studies. As such, the database is seen as a community engagement project that invites scientists all over the world to be- come active contributors of GlobaLID. The initiators of the database dedicate their effort to the con- tinuation and maintenance of the database but only the support of the whole community will allow a rapid and successful growth of GlobaLID.
Keywords
Originally assigned keywords
Corresponding MSL vocabulary keywords
MSL enriched keywords
MSL enriched sub domains i
Source publisher
GFZ Data Services
DOI
10.5880/fidgeo.2023.043
Authors
Westner, Katrin J.
0000-0001-5529-1165
Forschungsbereich Archäometallurgie, Deutsches Bergbau-Museum Bochum, Bochum, Germany;
Rose, Thomas
0000-0002-8186-3566
Goethe-Universität Frankfurt, Institut für Geowissenschaften, Frankfurt, Germany;
Klein, Sabine
0000-0002-3939-4428
Forschungsbereich Archäometallurgie, Deutsches Bergbau-Museum Bochum, Bochum, Germany; FIERCE, Frankfurt Isotope &Element Research Center, Goethe Universität, Frankfurt am Main, Germany; Institut für Archäologische Wissenschaften, Ruhr-Universität Bochum, Bochum, Germany;
Hsu, Yiu-Kang
0000-0002-2439-4863
Forschungsbereich Archäometallurgie, Deutsches Bergbau-Museum Bochum, Bochum, Germany;
Becerra, María Florencia
CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) - División Arqueología, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina;
Nezafati, Nima
0000-0002-5806-343X
Forschungsbereich Archäometallurgie, Deutsches Bergbau-Museum Bochum, Bochum, Germany;
Renson, Virginie
Archaeometry Laboratory, Research Reactor Center, University of Missouri, Columbia, MO, USA;
Stephens, Jay
Archaeometry Laboratory, Research Reactor Center, University of Missouri, Columbia, MO, USA; School of Anthropology, University of Arizona, Tucson, AZ, USA;
Contributers
Klein, Sabine
ProjectLeader
0000-0002-3939-4428
Forschungsbereich Archäometallurgie, Deutsches Bergbau-Museum Bochum, Bochum, Germany; FIERCE, Frankfurt Isotope &Element Research Center, Goethe Universität, Frankfurt am Main, Germany; Institut für Archäologische Wissenschaften, Ruhr-Universität Bochum, Bochum, Germany;
GlobaLID Core Team
ContactPerson
Forschungsbereich Archäometallurgie, Leibniz-Forschungsmuseum für Georessourcen/Deutsches Bergbau-Museum Bochum, Germany;
Fischer-Lechner, Sabine
DataCollector
Forschungsbereich Archäometallurgie, Leibniz-Forschungsmuseum für Georessourcen/Deutsches Bergbau-Museum Bochum, Germany;
Killick, David
DataCollector
School of Anthropology, University of Arizona, Tucson, AZ, USA;
Pryce, T. O.
DataCollector
Centre National de la Recherche Scientifique, UMR 7065 Institut de Recherche sur les ArchéoMATériaux, Université Paris-Saclay & CEA/CNRS UMR 3685 NIMBE, 91191 Gif-sur-Yvette, France;
GlobaLID Core Team
ContactPerson
Forschungsbereich Archäometallurgie, Leibniz-Forschungsmuseum für Georessourcen/Deutsches Bergbau-Museum Bochum, Germany;
References
Cites
ALBARÈDE, F., DESAULTY, A. ‐M., & BLICHERT‐TOFT, J. (2011). A GEOLOGICAL PERSPECTIVE ON THE USE OF Pb ISOTOPES IN ARCHAEOMETRY. Archaeometry, 54(5), 853–867. Portico. https://doi.org/10.1111/j.1475-4754.2011.00653.x
10.1111/j.1475-4754.2011.00653.x
Cites
Albarede, F., & Martine, J. (1984). Unscrambling the lead model ages. Geochimica et Cosmochimica Acta, 48(1), 207–212. https://doi.org/10.1016/0016-7037(84)90364-8
10.1016/0016-7037(84)90364-8
Cites
Cumming, G. L., & Richards, J. R. (1975). Ore lead isotope ratios in a continuously changing earth. Earth and Planetary Science Letters, 28(2), 155–171. https://doi.org/10.1016/0012-821x(75)90223-x
10.1016/0012-821X(75)90223-X
Cites
Galer, S. J. G. (1998). Practical Application of Lead Triple Spiking for Correction of Instrumental Mass Discrimination. Mineralogical Magazine, 62A(1), 491–492. https://doi.org/10.1180/minmag.1998.62a.1.260
10.1180/minmag.1998.62a.1.260
Cites
Goldmann, A., Brennecka, G., Noordmann, J., Weyer, S., & Wadhwa, M. (2015). The uranium isotopic composition of the Earth and the Solar System. Geochimica et Cosmochimica Acta, 148, 145–158. https://doi.org/10.1016/j.gca.2014.09.008
10.1016/j.gca.2014.09.008
Cites
Haest, M., Schneider, J., Cloquet, C., Latruwe, K., Vanhaecke, F., & Muchez, P. (2010). Pb isotopic constraints on the formation of the Dikulushi Cu–Pb–Zn–Ag mineralisation, Kundelungu Plateau (Democratic Republic of Congo). Mineralium Deposita, 45(4), 393–410. https://doi.org/10.1007/s00126-010-0279-6
10.1007/s00126-010-0279-6
Cites
McFarlane, C., Soltani Dehnavi, A., & Lentz, D. (2016). Pb-Isotopic Study of Galena by LA-Q-ICP-MS: Testing a New Methodology with Applications to Base-Metal Sulphide Deposits. Minerals, 6(3), 96. https://doi.org/10.3390/min6030096
10.3390/min6030096
Cites
Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2), 207–221. https://doi.org/10.1016/0012-821x(75)90088-6
10.1016/0012-821X(75)90088-6
Cites
White, W. M., Albarède, F., & Télouk, P. (2000). High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chemical Geology, 167(3–4), 257–270. https://doi.org/10.1016/s0009-2541(99)00182-5
10.1016/S0009-2541(99)00182-5
Cites
Asael, D., Matthews, A., Bar-Matthews, M., Harlavan, Y., & Segal, I. (2012). Tracking redox controls and sources of sedimentary mineralization using copper and lead isotopes. Chemical Geology, 310–311, 23–35. https://doi.org/10.1016/j.chemgeo.2012.03.021
10.1016/j.chemgeo.2012.03.021
IsDerivedFrom
BARNES, I. L., SHIELDS, W. R., MURPHY, T. J., & BRILL, R. H. (1974). Isotopic Analysis of Laurion Lead Ores. Archaeological Chemistry, 1–10. https://doi.org/10.1021/ba-1974-0138.ch001
10.1021/ba-1974-0138.ch001
IsDerivedFrom
Baron, S., Tămaş, C. G., Cauuet, B., & Munoz, M. (2011). Lead isotope analyses of gold–silver ores from Roşia Montană (Romania): a first step of a metal provenance study of Roman mining activity in Alburnus Maior (Roman Dacia). Journal of Archaeological Science, 38(5), 1090–1100. https://doi.org/10.1016/j.jas.2010.12.004
10.1016/j.jas.2010.12.004
IsDerivedFrom
Barton, J. M., Blaine, J. L., Doig, R., & Byron, C. L. (1994). The geological setting and style of copper mineralization at the Bushman group of deposits, northeastern Botswana. Journal of African Earth Sciences, 18(2), 87–97. https://doi.org/10.1016/0899-5362(94)90022-1
10.1016/0899-5362(94)90022-1
IsDerivedFrom
Begemann, F., Hauptmann, A., Schmitt‐Strecker, S., & Weisgerber, G. (2010). Lead isotope and chemical signature of copper from Oman and its occurrence in Mesopotamia and sites on the Arabian Gulf coast. Arabian Archaeology and Epigraphy, 21(2), 135–169. Portico. https://doi.org/10.1111/j.1600-0471.2010.00327.x
10.1111/j.1600-0471.2010.00327.x
IsDerivedFrom
Begemann, F., Schmitt-Strecker, S., Pernicka, E., & Schiavo, F. L. (2001). Chemical composition and lead isotopy of copper and bronze from Nuragic Sardinia. European Journal of Archaeology, 4(1), 43–85. https://doi.org/10.1179/eja.2001.4.1.43
10.1179/eja.2001.4.1.43
IsDerivedFrom
BEGEMANN, F., & SCHMITT-STRECKER, S. (2009). Über das frühe Kupfer Mesopotamiens [JB]. Iranica Antiqua, 0, 1–45. https://doi.org/10.2143/IA.44.0.2034374
10.2143/IA.44.0.2034374
IsDerivedFrom
Bird, G., Brewer, P. A., Macklin, M. G., Nikolova, M., Kotsev, T., Mollov, M., & Swain, C. (2010). Pb isotope evidence for contaminant-metal dispersal in an international river system: The lower Danube catchment, Eastern Europe. Applied Geochemistry, 25(7), 1070–1084. https://doi.org/10.1016/j.apgeochem.2010.04.012
10.1016/j.apgeochem.2010.04.012
IsDerivedFrom
Bolhar, R., Whitehouse, M. J., Milani, L., Magalhães, N., Golding, S. D., Bybee, G., LeBras, L., & Bekker, A. (2020). Atmospheric S and lithospheric Pb in sulphides from the 2.06 Ga Phalaborwa phoscorite-carbonatite Complex, South Africa. Earth and Planetary Science Letters, 530, 115939. https://doi.org/10.1016/j.epsl.2019.115939
10.1016/j.epsl.2019.115939
IsDerivedFrom
Contact
GlobaLID Core Team
Forschungsbereich Archäometallurgie, Leibniz-Forschungsmuseum für Georessourcen/Deutsches Bergbau-Museum Bochum, Germany;
GlobaLID Core Team
Forschungsbereich Archäometallurgie, Leibniz-Forschungsmuseum für Georessourcen/Deutsches Bergbau-Museum Bochum, Germany;
Citiation
Westner, K. J., Rose, T., Klein, S., Hsu, Y.-K., Becerra, M. F., Nezafati, N., Renson, V., & Stephens, J. (2023). GlobaLID – Global Lead Isotope Database (Version 12/2023) (Version 1.1) [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2023.043