Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.
Data Publication
Ring-shear test data of quartz sand G12 used for analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam
Rosenau, Matthias | Pohlenz, Andre | Kemnitz, Helga | Warsitzka, Michael
GFZ Data Services
(2018)
This dataset provides friction data from ring-shear tests (RST) for a quartz sand (“G12”). This material is used in various types of analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam for simulating brittle rocks in the upper crust. The material has been characterized by means of internal friction coefficients µ and cohesions C. According to our analysis the material shows a Mohr-Coulomb behaviour characterized by a linear failure envelope and peak, dynamic and reactivation friction coefficients of µP = 0.69, µD = 0.55 and µR = 0.62, respectively. Cohesions C are in the order of 50 – 110 Pa. The material shows a minor rate-weakening of <1% per ten-fold change in shear velocity. Further information about materical characteristics, measurement procedures, sample preparation, the RST (Ring-shear test) and VST (Velocity stepping test) procedure, as well as the analysed method is proviced in the data description file. The list of files explains the file and folder structure of the data set.
Keywords
Originally assigned keywords
Corresponding MSL vocabulary keywords
MSL enriched keywords
MSL original sub domains
MSL enriched sub domains i
Source publisher
GFZ Data Services
DOI
10.5880/GFZ.4.1.2019.003
Authors
Rosenau, Matthias
0000-0003-1134-5381
GFZ German Research Centre for Geosciences, Potsdam, Germany
Pohlenz, Andre
GFZ German Research Centre for Geosciences, Potsdam, Germany
Kemnitz, Helga
GFZ German Research Centre for Geosciences, Potsdam, Germany
Warsitzka, Michael
0000-0003-1774-5888
GFZ German Research Centre for Geosciences, Potsdam, Germany
References
Klinkmüller, M., Schreurs, G., Rosenau, M., & Kemnitz, H. (2016). Properties of granular analogue model materials: A community wide survey. Tectonophysics, 684, 23–38. https://doi.org/10.1016/j.tecto.2016.01.017
10.1016/j.tecto.2016.01.017
Cites
Ritter, M. C., Leever, K., Rosenau, M., & Oncken, O. (2016). Scaling the sandbox—Mechanical (dis) similarities of granular materials and brittle rock. Journal of Geophysical Research: Solid Earth, 121(9), 6863–6879. Portico. https://doi.org/10.1002/2016jb012915
10.1002/2016JB012915
Cites
Santimano, T., Rosenau, M., & Oncken, O. (2015). Intrinsic versus extrinsic variability of analogue sand-box experiments – Insights from statistical analysis of repeated accretionary sand wedge experiments. Journal of Structural Geology, 75, 80–100. https://doi.org/10.1016/j.jsg.2015.03.008
10.1016/j.jsg.2015.03.008
Cites
Schulze, D. (2003). Time‐ and Velocity‐Dependent Properties of Powders Effecting Slip‐Stick Oscillations. Chemical Engineering & Technology, 26(10), 1047–1051. Portico. https://doi.org/10.1002/ceat.200303112
10.1002/ceat.200303112
Cites
Cites
Warsitzka, M., Ge, Z., Schönebeck, J.-M., Pohlenz, A., & Kukowski, N. (2019). <i>Ring-shear test data of foam glass beads used for analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam and the Institute of Geosciences, Friedrich Schiller University Jena</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.1.2019.002
10.5880/GFZ.4.1.2019.002
IsCitedBy
Contact
Rosenau, Matthias
rosen@gfz-potsdam.de
GFZ German Research Centre for Geosciences, Potsdam, Germany
Citiation
Rosenau, M., Pohlenz, A., Kemnitz, H., & Warsitzka, M. (2018). Ring-shear test data of quartz sand G12 used for analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.1.2019.003