Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

Geochemical compositions of igneous rocks of the Central Andean orocline

Wörner, Gerhard | Mamani, Mirian

GRO.data

(2021)

Compilation of more than 1500 major- and trace-element data points, and 650 Sr-, 610 Nd-, and 570 Pb-isotopic analyses of Mesozoic-Cenozoic (190–0 Ma) magmatic rocks in southern Peru, northern Chile and Bolivia (Central Andean orocline). This compilation was initially published by Mamani et al. (2010) and was based on selected data published up until 2009, combined with new data from that study. Related key publication: Mamani, M., Wörner, G., & Sempere, T. (2010). Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): Tracing crustal thickening and magma generation through time and space. GSA Bulletin, 122(1–2), 162–182. https://doi.org/10.1130/B26538.1

Keywords


Originally assigned keywords
major elements
trace elements
Mesozoic
Cenozoic
lava
ignimbrite
ash
intrusion
metamorphic
dike
Peru
Chile
Bolivia
Argentina
andesite
amphibolite
basalt
basaltic andesite
dacite
diorite
gabbro
gneiss
granite
granodiorite
granulite
latite
monzodiorite
monzonite
quartzite
rhyodacite
rhyolite
scoria
serpentinite
shoshonite
tonalite
trachyandesite
trachybasalt
magmatic
Sr87Sr86
Nd143Nd144
Pb206Pb204
Pb207Pb204
Pb208Pb204
GEOCHEMISTRY
Neogene
Miocene
Pliocene
Paleogene
Eocene
Oligocene
Paleocene
Pleistocene
Cretaceous
Jurassic
Paleozoic
Carboniferous
Devonian
Ordovician
Permian
Proterozoic

Corresponding MSL vocabulary keywords
major elements
major elements
trace elements
trace elements
Mesozoic
Cenozoic
lava
lava
ignimbrite
dike
andesite
amphibolite
basalt
dacite
diorite
gabbro
gneiss
granite
granodiorite
granulite
latite
monzonite
quartzite
rhyolite
scoria
scoria
serpentinite
tonalite
Neogene
Miocene
Pliocene
Paleogene
Eocene
Oligocene
Paleocene
Pleistocene
Cretaceous
Jurassic
Paleozoic
Carboniferous
Devonian
Ordovician
Permian
Proterozoic

MSL enriched keywords
analysis
microchemical analysis
major elements
whole rock analysis
major elements
trace elements
trace elements
Phanerozoic
Mesozoic
Cenozoic
igneous rock - extrusive
lava
Modeled geomorphological feature
volcanic landforms
lava
analogue modelling material
granular modelling material
natural granular material
ignimbrite
dike
intermediate extrusive
andesite
metamorphic rock
amphibolite
basic extrusive
basalt
acidic extrusive
dacite
igneous rock - intrusive
intermediate intrusive
diorite
basic intrusive
gabbro
gneiss
acidic intrusive
granite
granodiorite
granulite
latite
monzonite
quartzite
rhyolite
pyroclastic rock
scoria
unconsolidated sediment
tephra
scoria
serpentinite
tonalite
Neogene
Miocene
Pliocene
Paleogene
Eocene
Oligocene
Paleocene
Quaternary
Pleistocene
Cretaceous
Jurassic
Paleozoic
Carboniferous
Devonian
Ordovician
Permian
Precambrian
Proterozoic
magma
Earth's structure
Earth crust
isotopic analysis

MSL enriched sub domains i

geochemistry
analogue modelling of geologic processes


Source publisher

GRO.data


DOI

10.5880/digis.e.2024.005


Authors

Wörner, Gerhard

0000-0003-1110-8976

Göttingen University, Göttingen, Germany;

Mamani, Mirian

0000-0003-2693-1332

Lima, Peru; Göttingen University, Göttingen, Germany;


Contributers

Sempere, Thierry

Researcher

0000-0002-8434-9415

Institut de Recherche pour le Développement and Université de Toulouse Paul Sabatier (SVT-OMP), Toulouse, France;

Wörner, Gerhard

ContactPerson

Göttingen University, Göttingen, Germany;


References

Wörner, G. (2021). <i>Geochemical compositions of igneous rocks of the Central Andean orocline</i> [Data set]. GRO.data. https://doi.org/10.25625/SS1TYI

10.25625/SS1TYI

IsIdenticalTo

Aitcheson, S. J., Harmon, R. S., Moorbath, S., Schneider, A., Soler, P., Soria-Escalante, E., Steele, G., Swainbank, I., & Wörner, G. (1995). Pb isotopes define basement domains of the Altiplano, central Andes. Geology, 23(6), 555. https://doi.org/10.1130/0091-7613(1995)023<0555:pidbdo>2.3.co;2

10.1130/0091-7613(1995)023%3C0555:PIDBDO%3E2.3.CO;2

Cites

Bock, B., Bahlburg, H., Wörner, G., & Zimmermann, U. (2000). Tracing Crustal Evolution in the Southern Central Andes from Late Precambrian to Permian with Geochemical and Nd and Pb Isotope Data. The Journal of Geology, 108(5), 515–535. https://doi.org/10.1086/314422

10.1086/314422

Cites

Boily, M., Brooks, C., Ludden, J. N., & James, D. E. (1989). Chemical and isotopic evolution of the coastal batholith of southern Peru. Journal of Geophysical Research: Solid Earth, 94(B9), 12483–12498. Portico. https://doi.org/10.1029/jb094ib09p12483

10.1029/JB094iB09p12483

Cites

Bourdon, B., Wörner, G., & Zindler, A. (2000). U-series evidence for crustal involvement and magma residence times in the petrogenesis of Parinacota volcano, Chile. Contributions to Mineralogy and Petrology, 139(4), 458–469. https://doi.org/10.1007/s004100000150

10.1007/s004100000150

Cites

Clark, A. H., Kontak, D. J., & Farrar, E. (1990). The San Judas Tadeo W (-Mo, Au) deposit; Permian lithophile mineralization in southeastern Peru. Economic Geology, 85(7), 1651–1668. https://doi.org/10.2113/gsecongeo.85.7.1651

10.2113/gsecongeo.85.7.1651

Cites

Davidson, J. P., & de Silva, S. L. (1992). Volcanic rocks from the Bolivian Altiplano: Insights into crustal structure, contamination, and magma genesis in the central Andes. Geology, 20(12), 1127. https://doi.org/10.1130/0091-7613(1992)020<1127:vrftba>2.3.co;2

10.1130/0091-7613(1992)020%3C1127:VRFTBA%3E2.3.CO;2

Cites

Davidson, J. P., McMillan, N. J., Moorbath, S., W�rner, G., Harmon, R. S., & Lopez-Escobar, L. (1990). The Nevados de Payachata volcanic region (18�S/69�W, N. Chile) II. Evidence for widespread crustal involvement in Andean magmatism. Contributions to Mineralogy and Petrology, 105(4), 412–432. https://doi.org/10.1007/bf00286829

10.1007/BF00286829

Cites

Delacour, A., Gerbe, M.-C., Thouret, J.-C., Wörner, G., & Paquereau-Lebti, P. (2006). Magma evolution of Quaternary minor volcanic centres in southern Peru, Central Andes. Bulletin of Volcanology, 69(6), 581–608. https://doi.org/10.1007/s00445-006-0096-z

10.1007/s00445-006-0096-z

Cites

FEELEY, T. C., & DAVIDSON, J. P. (1994). Petrology of Calc-Alkaline Lavas at Volc n Ollag e and the Origin of Compositional Diversity at Central Andean Stratovolcanoes. Journal of Petrology, 35(5), 1295–1340. https://doi.org/10.1093/petrology/35.5.1295

10.1093/petrology/35.5.1295

Cites

Gerbe, M.-C., & Thouret, J.-C. (2004). Role of magma mixing in the petrogenesis of tephra erupted during the 1990–98 explosive activity of Nevado Sabancaya, southern Peru. Bulletin of Volcanology, 66(6), 541–561. https://doi.org/10.1007/s00445-004-0340-3

10.1007/s00445-004-0340-3

Cites

Haschke, M., Siebel, W., Günther, A., & Scheuber, E. (2002). Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21°–26°S). Journal of Geophysical Research: Solid Earth, 107(B1). Portico. https://doi.org/10.1029/2001jb000328

10.1029/2001JB000328

Cites

Hora, J. M., Singer, B. S., & Worner, G. (2007). Volcano evolution and eruptive flux on the thick crust of the Andean Central Volcanic Zone: 40Ar/39Ar constraints from Volcan Parinacota, Chile. Geological Society of America Bulletin, 119(3–4), 343–362. https://doi.org/10.1130/b25954.1

10.1130/B25954.1

Cites

Kamenov, G. (2002). Sources of Lead in the San Cristobal, Pulacayo, and Potosi Mining Districts, Bolivia, and a Reevaluation of Regional Ore Lead Isotope Provinces. Economic Geology, 97(3), 573–592. https://doi.org/10.2113/97.3.573

10.2113/97.3.573

Cites

Kay, S. M., Coira, B., & Viramonte, J. (1994). Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna Plateau, central Andes. Journal of Geophysical Research: Solid Earth, 99(B12), 24323–24339. Portico. https://doi.org/10.1029/94jb00896

10.1029/94JB00896

Cites

Kay, S. M., Mpodozis, C., & Coira, B. (1999). Neogene Magmatism, Tectonism, and Mineral Deposits of the Central Ande (22° to 33° S Latitude). Geology and Ore Deposits of the Central Andes. https://doi.org/10.5382/sp.07.02

10.5382/SP.07.02

Cites

Kramer, W., Siebel, W., Romer, R. L., Haase, G., Zimmer, M., & Ehrlichmann, R. (2005). Geochemical and isotopic characteristics and evolution of the Jurassic volcanic arc between Arica (18°30′S) and Tocopilla (22°S), North Chilean Coastal Cordillera. Geochemistry, 65(1), 47–78. https://doi.org/10.1016/j.chemer.2004.01.002

10.1016/j.chemer.2004.01.002

Cites

Loewy, S. L., Connelly, J. N., & Dalziel, I. W. D. (2004). An orphaned basement block: The Arequipa-Antofalla Basement of the central Andean margin of South America. Geological Society of America Bulletin, 116(1), 171. https://doi.org/10.1130/b25226.1

10.1130/B25226.1

Cites

Lucassen, F., Becchio, R., Harmon, R., Kasemann, S., Franz, G., Trumbull, R., Wilke, H.-G., Romer, R. L., & Dulski, P. (2001). Composition and density model of the continental crust at an active continental margin—the Central Andes between 21° and 27°S. Tectonophysics, 341(1–4), 195–223. https://doi.org/10.1016/s0040-1951(01)00188-3

10.1016/S0040-1951(01)00188-3

Cites


Contact

Wörner, Gerhard

Göttingen University, Göttingen, Germany;


Citiation

Wörner, G., & Mamani, M. (2021). Geochemical compositions of igneous rocks of the Central Andean orocline [Data set]. GRO.data. https://doi.org/10.5880/DIGIS.E.2024.005


Geo location(s)

Study area: Central Andes