Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

Accessory Minerals in Felsic Igneous Rocks - Part 6: Composition of monazite-(Ce), xenotime-(Y) and zircon from the late-Variscan Fichtelgebirge/Smrčiny granites (Germany, Czech Republic)

Förster, Hans-Jürgen

GFZ Data Services

(2020)

This data set is the sixth part of a series reporting chemical data for accessory minerals from felsic igneous rocks. It assembles the results of electron-microprobe spot analyses of monazite-(Ce), xenotime-(Y) and zircon from the late-Variscan granites of the Fichtelgebirge/Smrčiny in the Saxothuringian Zone of the Variscan Orogen in Germany/ Czech Republic. The granites form an older, Namurian intrusive complex (OIC-p and OIC-e) and a younger, post-Westphalian intrusive complex (YIC-1 and YIC-2). Both complexes have distinct radioactive accessory-mineral assemblages and compositions. The OIC-p biotite monzogranites contain monazite-(Ce) and minor thorite, but apparently lack magmatic xenotime-(Y) and uraninite. The more evolved OIC-e two-mica granites bear monazite-(Ce) occasionally rich in Th (up to 21 wt% ThO2) and U (8 wt% UO2), xenotime-(Y) of moderate U content (< 3.3 wt% UO2), and uraninite poor in Th and the REE. The most fractionated YIC Li-mica granites (YIC-2) may contain monazite extremely high in Th (40.5 wt% ThO2) and U (8.6 wt% UO2), which classify as cheralite-(Ce), xenotime-(Y) rich in U (6.3 wt% UO2) and such with elevated Y/Ho ratios (up to 48), and also a Th–REE-poor uraninite. In these granites, zircon may contain up to 5 wt% HfO2 and display low, fractionated Zr/Hf ratios (down to 10). The data set contains the complete pile of electron-microprobe analyses for monazite-(Ce) (MONA-FICH-2020), xenotime-(Y) (XENO-FICH-2020), and zircon (ZIRC-FICH-2020). All tables are presented as Excel (xlsx) and machine-readable txt formats. The content of the tables and further information on the granites and regional geology are provided in the data description file.

Keywords


Originally assigned keywords
monazite
xenotime
zircon
mineral composition
magma differentiation
electronmicroprobe analysis
rare earth elements
Variscan orogeny
Fichtelgebirge
Saxothuringian Zone
Namurian intrusive complex
postWestphalian intrusive complex
MINERALS
IGNEOUS ROCKS
ELEMENTS

Corresponding MSL vocabulary keywords
monazite
zircon
minerals

MSL enriched keywords
minerals
phosphate minerals
monazite
silicate minerals
nesosilicates
zircon
igneous rock - intrusive
acidic intrusive
granite
oxide mineral
uraninite
phyllosilicates
mica
biotite
tectonic plate boundary
convergent tectonic plate boundary
continental collision
orogen
equipment
electron probe micro-analyzer
Apparatus
microchemical analysis
electron probe micro analyser

MSL enriched sub domains i

geochemistry
microscopy and tomography


Source publisher

GFZ Data Services


DOI

10.5880/gfz.4.8.2020.002


Authors

Förster, Hans-Jürgen

GFZ German Research Centre for Geosciecnces, Potsdam, Germany;


References

References

Anders, E., & Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53(1), 197–214. https://doi.org/10.1016/0016-7037(89)90286-x

10.1016/0016-7037(89)90286-X

References

Drake, M. J., & Weill, D. F. (1972). New rare earth element standards for electron microprobe analysis. Chemical Geology, 10(2), 179–181. https://doi.org/10.1016/0009-2541(72)90016-2

10.1016/0009-2541(72)90016-2

References

IsDocumentedBy

Förster, H. J., Rhede, D., & Hecht, L. (2008). Chemical composition of radioactive accessory minerals: implications for the evolution, alteration, age, and uranium fertility of the Fichtelgebirge granites (NE Bavaria, Germany). Neues Jahrbuch Für Mineralogie - Abhandlungen, 185(2), 161–182. https://doi.org/10.1127/0077-7757/2008/0117

10.1127/0077-7757/2008/0117

IsDocumentedBy

Hecht, L., & Vigneresse, J. L. (1999). A multidisciplinary approach combining geochemical, gravity and structural data: implications for pluton emplacement and zonation. Geological Society, London, Special Publications, 168(1), 95–110. https://doi.org/10.1144/gsl.sp.1999.168.01.07

10.1144/GSL.SP.1999.168.01.07

References

Irber, W., Förster, H.-J., Hecht, L., Möller, P., & Morteani, G. (1997). Experimental, geochemical, mineralogical and O-isotope constraints on the late-magmatic history of the Fichtelgebirge granites (Germany). Geologische Rundschau, 86(S1), S110–S124. https://doi.org/10.1007/pl00014647

10.1007/PL00014647

IsDocumentedBy

Jarosewich, E., & Boatner, L. A. (1991). Rare‐Earth Element Reference Samples for Electron Microprobe Analysis. Geostandards Newsletter, 15(2), 397–399. Portico. https://doi.org/10.1111/j.1751-908x.1991.tb00115.x

10.1111/j.1751-908X.1991.tb00115.x

References

Schödlbauer, S., Hecht, L., Höhndorf, A., & Morteani, G. (1997). Enclaves in the S-type granites of the Kösseine massif (Fichtelgebirge, Germany): implications for the origin of granites. Geologische Rundschau, 86(S1), S125–S140. https://doi.org/10.1007/pl00014648

10.1007/PL00014648

References

References


Citiation

Förster, H.-J. (2020). Accessory Minerals in Felsic Igneous Rocks - Part 6: Composition of monazite-(Ce), xenotime-(Y) and zircon from the late-Variscan Fichtelgebirge/Smrčiny granites (Germany, Czech Republic) [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.8.2020.002


Geo location(s)

Fichtelgebirge