Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

Sediment geochemistry data for the publication: “10Be/9Be ratios reveal marine authigenic clay formation”

Bernhardt, Anne | Oelze, Marcus | Bouchez, Julien | von Blanckenburg, Friedhelm | Mohtadi, Mahyar | Christl, Marcus | Wittmann-Oelze, Hella

GFZ Data Services

(2020)

As reverse weathering has been shown to impact long-term changes in atmospheric CO2 levels, it is crucial to develop quantitative tools to reconstruct marine authigenic clay formation. We explored the potential of the beryllium (Be) isotope ratio (10Be/9Be) recorded in marine clay-sized sediment to track neoformation of authigenic clays. The power of such proxy relies on the orders-of-magnitude difference in 10Be/9Be ratios between continental Be and Be dissolved in seawater. On riverine and marine sediments collected along a Chilean margin transect we chemically extracted reactive phases and separated the clay-sized sediment fraction. We compare the riverine and marine 10Be/9Be ratio of this fraction. Moreover, we compare the elemental and mineralogical composition and the Nd and Sr-isotopic composition of these samples. 10Be/9Be ratios increase four-fold from riverine to marine sediment. We attribute this increase to the incorporation of Be high in 10Be/9Be from dissolved biogenic opal, which also serves as a Si-source for the precipitation of marine authigenic clays. 10Be/9Be ratios thus sensitively track reverse-weathering reactions forming marine authigenic clays.

Keywords


Originally assigned keywords
reverse weathering
authigenic clay
beryllium
cosmogenic nuclide
10Be
denudation
WEATHERING
SEDIMENTS
EROSION
RADIONUCLIDES
ISOTOPES
ISOTOPE RATIOS
CHEMICAL CONCENTRATIONS
CHEMICAL DECOMPOSITION
CHEMICAL WEATHERING
MARINE GEOCHEMISTRY
SEDIMENT CHEMISTRY
TERRIGENOUS SEDIMENTS
SEDIMENT COMPOSITION
PARTICLE FLUX
mud size sediment
clastic sedimentary material
sediment
chemical sedimentary material
sedimentation geology

Corresponding MSL vocabulary keywords
beryllium
unconsolidated sediment

MSL enriched keywords
measured property
beryllium
unconsolidated sediment
minerals
silicate minerals
phyllosilicates
clay
clastic sediment
clay
tectosilicates
quartz
opal

MSL enriched sub domains i

geochemistry


Source publisher

GFZ Data Services


DOI

10.5880/fidgeo.2020.009


Authors

Bernhardt, Anne

0000-0002-2584-511X

Institute of Geological Sciences, Freie Universitaet Berlin, Berlin, Germany; Freie Universitaet Berlin, Berlin, Germany;

Oelze, Marcus

0000-0002-3950-6629

GFZ German Research Centre for Geosciences, Inorganic and Isotope Geochemistry, Potsdam, Germany; GFZ German Research Centre for Geosciences, Potsdam, Germany;

Bouchez, Julien

0000-0003-4832-1615

Institut de Physique du Globe de Paris, 1 rue Jussieu, 75238 Paris 05, France;

von Blanckenburg, Friedhelm

0000-0002-2964-717X

GFZ German Research Centre for Geosciences, Earth Surface Geochemistry, Potsdam, Germany; GFZ German Research Centre for Geosciences, Potsdam, Germany;

Mohtadi, Mahyar

0000-0003-3306-0969

MARUM Center for Marine Environmental Sciences, Bremen University, Bremen, Germany;

Christl, Marcus

0000-0002-3950-6629

Laboratory of Ion Beam Physics, Department of Physics, ETH Zurich, Zurich, Switzerland; ETH Zurich, Zurich, Switzerland;

Wittmann-Oelze, Hella

0000-0002-1252-705

GFZ German Research Centre for Geosciences, Earth Surface Geochemistry, Potsdam, Germany; GFZ German Research Centre for Geosciences, Potsdam, Germany;


Contributers

Bernhardt, Anne

ContactPerson

0000-0002-2584-511X

Institute of Geological Sciences, Freie Universitaet Berlin, Berlin, Germany; Freie Universitaet Berlin, Berlin, Germany;

Bernhardt, Anne

Researcher

0000-0002-2584-511X

Institute of Geological Sciences, Freie Universitaet Berlin, Berlin, Germany; Freie Universitaet Berlin, Berlin, Germany;

Oelze, Marcus

DataCollector

0000-0002-3950-6629

GFZ German Research Centre for Geosciences, Inorganic and Isotope Geochemistry, Potsdam, Germany; GFZ German Research Centre for Geosciences, Potsdam, Germany;

Oelze, Marcus

Researcher

0000-0002-3950-6629

GFZ German Research Centre for Geosciences, Inorganic and Isotope Geochemistry, Potsdam, Germany; GFZ German Research Centre for Geosciences, Potsdam, Germany;

Bouchez, Julien

Researcher

0000-0003-4832-1615

Institut de Physique du Globe de Paris, 1 rue Jussieu, 75238 Paris 05, France;

Bouchez, Julien

DataCollector

0000-0003-4832-1615

Institut de Physique du Globe de Paris, 1 rue Jussieu, 75238 Paris 05, France;

von Blanckenburg, Friedhelm

Researcher

0000-0002-2964-717X

GFZ German Research Centre for Geosciences, Earth Surface Geochemistry, Potsdam, Germany; GFZ German Research Centre for Geosciences, Potsdam, Germany;

Mohtadi, Mahyar

Researcher

0000-0003-3306-0969

MARUM Center for Marine Environmental Sciences, Bremen University, Bremen, Germany;

Christl, Marcus

Researcher

0000-0002-3950-6629

Laboratory of Ion Beam Physics, Department of Physics, ETH Zurich, Zurich, Switzerland; ETH Zurich, Zurich, Switzerland;

Christl, Marcus

DataCollector

0000-0002-3950-6629

Laboratory of Ion Beam Physics, Department of Physics, ETH Zurich, Zurich, Switzerland; ETH Zurich, Zurich, Switzerland;

Wittmann-Oelze, Hella

Researcher

0000-0002-1252-705

GFZ German Research Centre for Geosciences, Earth Surface Geochemistry, Potsdam, Germany; GFZ German Research Centre for Geosciences, Potsdam, Germany;

Wittmann-Oelze, Hella

DataCollector

0000-0002-1252-705

GFZ German Research Centre for Geosciences, Earth Surface Geochemistry, Potsdam, Germany; GFZ German Research Centre for Geosciences, Potsdam, Germany;


References

Wittmann, H., von Blanckenburg, F., Mohtadi, M., Christl, M., & Bernhardt, A. (2017). The competition between coastal trace metal fluxes and oceanic mixing from the 10Be/9Be ratio: Implications for sedimentary records. Geophysical Research Letters, 44(16), 8443–8452. Portico. https://doi.org/10.1002/2017gl074259

10.1002/2017GL074259

Continues

Bernhardt, A., Oelze, M., Bouchez, J., von Blanckenburg, F., Mohtadi, M., Christl, M., & Wittmann, H. (2020). 10Be/9Be Ratios Reveal Marine Authigenic Clay Formation. Geophysical Research Letters, 47(4). Portico. https://doi.org/10.1029/2019gl086061

10.1029/2019GL086061

IsSupplementTo

Bernhardt, A., Hebbeln, D., Regenberg, M., Lückge, A., & Strecker, M. R. (2016). Shelfal sediment transport by an undercurrent forces turbidity-current activity during high sea level along the Chile continental margin. Geology, 44(4), 295–298. https://doi.org/10.1130/g37594.1

10.1130/G37594.1

Cites

Bernhardt, A., Melnick, D., Jara-Muñoz, J., Argandoña, B., González, J., & Strecker, M. R. (2015). Controls on submarine canyon activity during sea-level highstands: The Biobío canyon system offshore Chile. Geosphere, 11(4), 1226–1255. https://doi.org/10.1130/ges01063.1

10.1130/GES01063.1

Cites

Bourles, D., Raisbeck, G. M., & Yiou, F. (1989). 10Be and 9Be in marine sediments and their potential for dating. Geochimica et Cosmochimica Acta, 53(2), 443–452. https://doi.org/10.1016/0016-7037(89)90395-5

10.1016/0016-7037(89)90395-5

Cites

Foster, M. D. (1953). Geochemical studies of clay minerals III. The determination of free silica and free alumina in montmorillonites. Geochimica et Cosmochimica Acta, 3(2–3), 143–154. https://doi.org/10.1016/0016-7037(53)90003-9

10.1016/0016-7037(53)90003-9

Cites

GOVINDARAJU, K. (1995). 1995 WORKING VALUES WITH CONFIDENCE LIMITS FOR TWENTY‐SIX CRPG, ANRT AND IWG‐GIT GEOSTANDARDS. Geostandards Newsletter, 19(s1), 1–32. Portico. https://doi.org/10.1111/j.1751-908x.1995.tb00164.x

10.1111/j.1751-908X.1995.tb00164.x

Cites

Hajj, F., Poszwa, A., Bouchez, J., & Guérold, F. (2017). Radiogenic and “stable” strontium isotopes in provenance studies: A review and first results on archaeological wood from shipwrecks. Journal of Archaeological Science, 86, 24–49. https://doi.org/10.1016/j.jas.2017.09.005

10.1016/j.jas.2017.09.005

Cites

Cites

Sauer, D., Saccone, L., Conley, D. J., Herrmann, L., & Sommer, M. (2006). Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry, 80(1), 89–108. https://doi.org/10.1007/s10533-005-5879-3

10.1007/s10533-005-5879-3

Cites

Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851. https://doi.org/10.1021/ac50043a017

10.1021/ac50043a017

Cites

Cites

von Blanckenburg, F., Belshaw, N. S., & O’Nions, R. K. (1996). Separation of 9Be and cosmogenic 10Be from environmental materials and SIMS isotope dilution analysis. Chemical Geology, 129(1–2), 93–99. https://doi.org/10.1016/0009-2541(95)00157-3

10.1016/0009-2541(95)00157-3

Cites

von Blanckenburg, F., Hewawasam, T., & Kubik, P. W. (2004). Cosmogenic nuclide evidence for low weathering and denudation in the wet, tropical highlands of Sri Lanka. Journal of Geophysical Research: Earth Surface, 109(F3). Portico. https://doi.org/10.1029/2003jf000049

10.1029/2003JF000049

Cites

Wittmann, H., von Blanckenburg, F., Mohtadi, M., Christl, M., & Bernhardt, A. (2017). The competition between coastal trace metal fluxes and oceanic mixing from the 10Be/9Be ratio: Implications for sedimentary records. Geophysical Research Letters, 44(16), 8443–8452. Portico. https://doi.org/10.1002/2017gl074259

10.1002/2017GL074259

Cites


Contact

Wittmann-Oelze, Hella

GFZ German Research Centre for Geosciences, Earth Surface Geochemistry, Potsdam, Germany; GFZ German Research Centre for Geosciences, Potsdam, Germany;


Citiation

Bernhardt, A., Oelze, M., Bouchez, J., von Blanckenburg, F., Mohtadi, M., Christl, M., & Wittmann-Oelze, H. (2020). Sediment geochemistry data for the publication: “10Be/9Be ratios reveal marine authigenic clay formation” [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2020.009