Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.
Data Publication
Host Rock Variability Powers the Diversity of Steam-Driven Eruptions
Montanaro, Cristian | Cronin, Shane J. | Scheu , Bettina Scheu | Kennedy, Ben | Scott, Bradley J. | Dingwell, Donald B.
GFZ Data Services
(2020)
Steam-driven eruptions are explosions that frequently occur in volcanic and geothermal areas. They are powered by the sudden release and expansion of steam and liquid water trapped under high pressure within the pore spaces of host rocks. We have experimentally studied how the strength of rock hosting steam and liquid controls the nature of explosions based on examples from Lake Okaro (New Zealand). Specifically, we used experiments to estimate the relative amounts of energy that goes into breaking rock up, versus that required for ejecting particles upwards and outwards. Here we report the main methodological approach and results of petrophysical properties analyses, decompression experiments and estimation of explosivity of water, respectively.
Keywords
Originally assigned keywords
Corresponding MSL vocabulary keywords
MSL enriched keywords
MSL original sub domains
MSL enriched sub domains i
Source publisher
GFZ Data Services
DOI
10.5880/fidgeo.2020.046
Authors
Montanaro, Cristian
0000-0002-7896-3419
Ludwig-Maximilians-University Munich, Munich, Germany
Cronin, Shane J.
0000-0001-7499-603X
University of Auckland
Scheu , Bettina Scheu
0000-0002-0478-1049
Ludwig-Maximilians-University Munich, Munich, Germany
Kennedy, Ben
0000-0001-7235-6493
University of Canterbury
Scott, Bradley J.
0000-0003-3419-2445
GNS Science
Dingwell, Donald B.
0000-0002-3332-789X
Ludwig-Maximilians-University Munich, Munich, Germany
References
Alatorre-Ibargüengoitia, M. A., Scheu, B., Dingwell, D. B., Delgado-Granados, H., & Taddeucci, J. (2010). Energy consumption by magmatic fragmentation and pyroclast ejection during Vulcanian eruptions. Earth and Planetary Science Letters, 291(1–4), 60–69. https://doi.org/10.1016/j.epsl.2009.12.051
10.1016/j.epsl.2009.12.051
Cites
Koyaguchi, T., Scheu, B., Mitani, N. K., & Melnik, O. (2008). A fragmentation criterion for highly viscous bubbly magmas estimated from shock tube experiments. Journal of Volcanology and Geothermal Research, 178(1), 58–71. https://doi.org/10.1016/j.jvolgeores.2008.02.008
10.1016/j.jvolgeores.2008.02.008
Cites
Mastin, L. G. (1995). Thermodynamics of gas and steam-blast eruptions. Bulletin of Volcanology, 57(2), 85–98. https://doi.org/10.1007/bf00301399
10.1007/BF00301399
Cites
Mayer, K., Scheu, B., Gilg, H. A., Heap, M. J., Kennedy, B. M., Lavallée, Y., Letham-Brake, M., & Dingwell, D. B. (2015). Experimental constraints on phreatic eruption processes at Whakaari (White Island volcano). Journal of Volcanology and Geothermal Research, 302, 150–162. https://doi.org/10.1016/j.jvolgeores.2015.06.014
10.1016/j.jvolgeores.2015.06.014
Cites
Montanaro, C., Scheu, B., Mayer, K., Orsi, G., Moretti, R., Isaia, R., & Dingwell, D. B. (2016). Experimental investigations on the explosivity of steam‐driven eruptions: A case study of Solfatara volcano (Campi Flegrei). Journal of Geophysical Research: Solid Earth, 121(11), 7996–8014. Portico. https://doi.org/10.1002/2016jb013273
10.1002/2016JB013273
Cites
Planas-Cuchi, E., Salla, J. M., & Casal, J. (2004). Calculating overpressure from BLEVE explosions. Journal of Loss Prevention in the Process Industries, 17(6), 431–436. https://doi.org/10.1016/j.jlp.2004.08.002
10.1016/j.jlp.2004.08.002
Cites
Prugh, R. W. (1991). Quantitative Evaluation of “Bleve” Hazards. Journal of Fire Protection Engineering, 3(1), 9–24. https://doi.org/10.1177/104239159100300102
10.1177/104239159100300102
Cites
Rager, A. H., Smith, E. I., Scheu, B., & Dingwell, D. B. (2014). The effects of water vaporization on rock fragmentation during rapid decompression: Implications for the formation of fluidized ejecta on Mars. Earth and Planetary Science Letters, 385, 68–78. https://doi.org/10.1016/j.epsl.2013.10.029
10.1016/j.epsl.2013.10.029
Cites
Scheu, B., Spieler, O., & Dingwell, D. B. (2006). Dynamics of explosive volcanism at Unzen volcano: an experimental contribution. Bulletin of Volcanology, 69(2), 175–187. https://doi.org/10.1007/s00445-006-0066-5
10.1007/s00445-006-0066-5
Cites
Scheu, B., Kueppers, U., Mueller, S., Spieler, O., & Dingwell, D. B. (2008). Experimental volcanology on eruptive products of Unzen volcano. Journal of Volcanology and Geothermal Research, 175(1–2), 110–119. https://doi.org/10.1016/j.jvolgeores.2008.03.023
10.1016/j.jvolgeores.2008.03.023
Cites
Thiéry, R., & Mercury, L. (2009). Explosive properties of water in volcanic and hydrothermal systems. Journal of Geophysical Research: Solid Earth, 114(B5). Portico. https://doi.org/10.1029/2008jb005742
10.1029/2008JB005742
Cites
Montanaro, C., Cronin, S. J., Scheu, B., Kennedy, B., Scott, B. J., & Dingwell, D. B. (2021). Host Rock Variability Powers the Diversity of Steam‐Driven Eruptions. Geophysical Research Letters, 48(1). Portico. https://doi.org/10.1029/2020gl089025
10.1029/2020GL089025
IsSupplementTo
Contact
Montanaro, Cristian
cristian.montanaro@min.uni-muenchen.de
Ludwig-Maximilians-University Munich, Munich, Germany
Citiation
Montanaro, C., Cronin, S. J., Scheu , B. S., Kennedy, B., Scott, B. J., & Dingwell, D. B. (2020). Host Rock Variability Powers the Diversity of Steam-Driven Eruptions [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2020.046