Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

Host Rock Variability Powers the Diversity of Steam-Driven Eruptions

Montanaro, Cristian | Cronin, Shane J. | Scheu , Bettina Scheu | Kennedy, Ben | Scott, Bradley J. | Dingwell, Donald B.

GFZ Data Services

(2020)

Steam-driven eruptions are explosions that frequently occur in volcanic and geothermal areas. They are powered by the sudden release and expansion of steam and liquid water trapped under high pressure within the pore spaces of host rocks. We have experimentally studied how the strength of rock hosting steam and liquid controls the nature of explosions based on examples from Lake Okaro (New Zealand). Specifically, we used experiments to estimate the relative amounts of energy that goes into breaking rock up, versus that required for ejecting particles upwards and outwards. Here we report the main methodological approach and results of petrophysical properties analyses, decompression experiments and estimation of explosivity of water, respectively.

Keywords


Originally assigned keywords
Hydrothermal eruptions
Experimental
Energy partitioning
Eruption dynamic
EPOS
multiscale laboratories
rock and melt physical properties
ashtufflapillistoneandlapillituff
Rock
Density
Grain size distribution
Permeability
Permeameter
Pycnometer

Corresponding MSL vocabulary keywords
energy partitioning
grain size distribution
grain size distribution
grain size distribution
permeability
permeameter
pycnometer
pycnometer

MSL enriched keywords
Inferred deformation behavior
energy partitioning
Measured property
grain size distribution
Measured property
grain size distribution
Analyzed feature
grain size and configuration
grain size
grain size distribution
permeability
Apparatus
fluid transport testing
permeameter
general sample characterization
porosity and density determination
pycnometer
Apparatus
characterization of modelling material
porosity and density determination
pycnometer
antropogenic setting
geothermal energy field
subsurface energy production
geothermal energy extraction

MSL original sub domains

rock and melt physics

MSL enriched sub domains i

rock and melt physics
analogue modelling of geologic processes
microscopy and tomography


Source publisher

GFZ Data Services


DOI

10.5880/fidgeo.2020.046


Authors

Montanaro, Cristian

0000-0002-7896-3419

Ludwig-Maximilians-University Munich, Munich, Germany

Cronin, Shane J.

0000-0001-7499-603X

University of Auckland

Scheu , Bettina Scheu

0000-0002-0478-1049

Ludwig-Maximilians-University Munich, Munich, Germany

Kennedy, Ben

0000-0001-7235-6493

University of Canterbury

Scott, Bradley J.

0000-0003-3419-2445

GNS Science

Dingwell, Donald B.

0000-0002-3332-789X

Ludwig-Maximilians-University Munich, Munich, Germany


References

Alatorre-Ibargüengoitia, M. A., Scheu, B., Dingwell, D. B., Delgado-Granados, H., & Taddeucci, J. (2010). Energy consumption by magmatic fragmentation and pyroclast ejection during Vulcanian eruptions. Earth and Planetary Science Letters, 291(1–4), 60–69. https://doi.org/10.1016/j.epsl.2009.12.051

10.1016/j.epsl.2009.12.051

Cites

Koyaguchi, T., Scheu, B., Mitani, N. K., & Melnik, O. (2008). A fragmentation criterion for highly viscous bubbly magmas estimated from shock tube experiments. Journal of Volcanology and Geothermal Research, 178(1), 58–71. https://doi.org/10.1016/j.jvolgeores.2008.02.008

10.1016/j.jvolgeores.2008.02.008

Cites

Mastin, L. G. (1995). Thermodynamics of gas and steam-blast eruptions. Bulletin of Volcanology, 57(2), 85–98. https://doi.org/10.1007/bf00301399

10.1007/BF00301399

Cites

Mayer, K., Scheu, B., Gilg, H. A., Heap, M. J., Kennedy, B. M., Lavallée, Y., Letham-Brake, M., & Dingwell, D. B. (2015). Experimental constraints on phreatic eruption processes at Whakaari (White Island volcano). Journal of Volcanology and Geothermal Research, 302, 150–162. https://doi.org/10.1016/j.jvolgeores.2015.06.014

10.1016/j.jvolgeores.2015.06.014

Cites

Montanaro, C., Scheu, B., Mayer, K., Orsi, G., Moretti, R., Isaia, R., & Dingwell, D. B. (2016). Experimental investigations on the explosivity of steam‐driven eruptions: A case study of Solfatara volcano (Campi Flegrei). Journal of Geophysical Research: Solid Earth, 121(11), 7996–8014. Portico. https://doi.org/10.1002/2016jb013273

10.1002/2016JB013273

Cites

Planas-Cuchi, E., Salla, J. M., & Casal, J. (2004). Calculating overpressure from BLEVE explosions. Journal of Loss Prevention in the Process Industries, 17(6), 431–436. https://doi.org/10.1016/j.jlp.2004.08.002

10.1016/j.jlp.2004.08.002

Cites

Prugh, R. W. (1991). Quantitative Evaluation of “Bleve” Hazards. Journal of Fire Protection Engineering, 3(1), 9–24. https://doi.org/10.1177/104239159100300102

10.1177/104239159100300102

Cites

Rager, A. H., Smith, E. I., Scheu, B., & Dingwell, D. B. (2014). The effects of water vaporization on rock fragmentation during rapid decompression: Implications for the formation of fluidized ejecta on Mars. Earth and Planetary Science Letters, 385, 68–78. https://doi.org/10.1016/j.epsl.2013.10.029

10.1016/j.epsl.2013.10.029

Cites

Scheu, B., Spieler, O., & Dingwell, D. B. (2006). Dynamics of explosive volcanism at Unzen volcano: an experimental contribution. Bulletin of Volcanology, 69(2), 175–187. https://doi.org/10.1007/s00445-006-0066-5

10.1007/s00445-006-0066-5

Cites

Scheu, B., Kueppers, U., Mueller, S., Spieler, O., & Dingwell, D. B. (2008). Experimental volcanology on eruptive products of Unzen volcano. Journal of Volcanology and Geothermal Research, 175(1–2), 110–119. https://doi.org/10.1016/j.jvolgeores.2008.03.023

10.1016/j.jvolgeores.2008.03.023

Cites

Thiéry, R., & Mercury, L. (2009). Explosive properties of water in volcanic and hydrothermal systems. Journal of Geophysical Research: Solid Earth, 114(B5). Portico. https://doi.org/10.1029/2008jb005742

10.1029/2008JB005742

Cites

Montanaro, C., Cronin, S. J., Scheu, B., Kennedy, B., Scott, B. J., & Dingwell, D. B. (2021). Host Rock Variability Powers the Diversity of Steam‐Driven Eruptions. Geophysical Research Letters, 48(1). Portico. https://doi.org/10.1029/2020gl089025

10.1029/2020GL089025

IsSupplementTo


Contact

Montanaro, Cristian

cristian.montanaro@min.uni-muenchen.de

Ludwig-Maximilians-University Munich, Munich, Germany


Citiation

Montanaro, C., Cronin, S. J., Scheu , B. S., Kennedy, B., Scott, B. J., & Dingwell, D. B. (2020). Host Rock Variability Powers the Diversity of Steam-Driven Eruptions [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2020.046


Spatial coordinates