Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

Ring-shear test data of quartz sand used for analogue experiments in the laboratory of the Institute of Geophysics of the Czech Academy of Science, Prague

Warsitzka, Michael | Závada, Prokop | Pohlenz, Andre | Rosenau, Matthias

GFZ Data Services

(2019)

This dataset provides friction data from ring-shear tests (RST) for a quartz sand used in analogue experiments at the Institute of Geophysics of the Czech Academy of Science (IGCAS) (Kratinová et al., 2006; Zavada et al., 2009; Lehmann et al., 2017; Krýza et al., 2019). It is characterized by means of internal friction coefficients µ and cohesion C. According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak friction coefficients µP of the tested material is ~0.75, dynamic friction coeffi-cients µD is ~0.60 and reactivation friction coefficients µR is ~0.64. Cohesions of the material range between 90 and 130 Pa. The material shows a minor rate-weakening of <1% per ten-fold change in shear velocity v.

Keywords


Originally assigned keywords
EPOS
Multiscale laboratories
analogue models of geologic processes
TECTONICS
CALIBRATIONVALIDATION
upper continental crustal setting
fracturing
fault
tectonic and structural features
Quartz Sand
Iron Powder
Ringshear tester
Force sensor
Friction coefficient
Cohesion

Corresponding MSL vocabulary keywords
tectonic plate boundary
upper crust
iron powder
friction coefficient
frictional deformation
friction coefficient
cohesion
cohesion

MSL enriched keywords
tectonic plate boundary
Earth's structure
Earth crust
upper crust
analogue modelling material
granular modelling material
metalic powders
iron powder
Measured property
friction - controlled slip rate
friction coefficient
Inferred deformation behavior
deformation behaviour
frictional deformation
Measured property
friction - controlled slip rate
friction coefficient
cohesion
cohesion
minerals
silicate minerals
tectosilicates
quartz
unconsolidated sediment
clastic sediment
sand
Apparatus
deformation testing
shear testing
rotary shear apparatus
Apparatus
characterization of modelling material
frictional property determination
rotary shear apparatus
brittle deformation

MSL original sub domains

analogue modelling of geologic processes

MSL enriched sub domains i

analogue modelling of geologic processes
rock and melt physics


Source publisher

GFZ Data Services


DOI

10.5880/GFZ.4.1.2019.008


Authors

Warsitzka, Michael

0000-0003-1774-5888

Institute of Geophysics, Czech Academy of Sciences, Prague, Czech Republic

Závada, Prokop

0000-0003-1702-3770

Institute of Geophysics, Czech Academy of Sciences, Prague, Czech Republic

Pohlenz, Andre

GFZ German Research Centre for Geosciences, Potsdam, Germany

Rosenau, Matthias

0000-0003-1134-5381

GFZ German Research Centre for Geosciences, Potsdam, Germany


References

Klinkmüller, M., Schreurs, G., Rosenau, M., & Kemnitz, H. (2016). Properties of granular analogue model materials: A community wide survey. Tectonophysics, 684, 23–38. https://doi.org/10.1016/j.tecto.2016.01.017

10.1016/j.tecto.2016.01.017

Cites

Kratinová, Z., Závada, P., Hrouda, F., & Schulmann, K. (2006). Non-scaled analogue modelling of AMS development during viscous flow: A simulation on diapir-like structures. Tectonophysics, 418(1–2), 51–61. https://doi.org/10.1016/j.tecto.2005.12.013

10.1016/j.tecto.2005.12.013

IsSupplementTo

Krýza, O., Závada, P., & Lexa, O. (2019). Advanced strain and mass transfer analysis in crustal-scale oroclinal buckling and detachment folding analogue models. Tectonophysics, 764, 88–109. https://doi.org/10.1016/j.tecto.2019.05.001

10.1016/j.tecto.2019.05.001

IsSupplementTo

Lehmann, J., Schulmann, K., Lexa, O., Závada, P., Štípská, P., Hasalová, P., Belyanin, G., & Corsini, M. (2017). Detachment folding of partially molten crust in accretionary orogens: A new magma-enhanced vertical mass and heat transfer mechanism. Lithosphere, 9(6), 889–909. https://doi.org/10.1130/l670.1

10.1130/L670.1

IsSupplementTo

Ritter, M. C., Leever, K., Rosenau, M., & Oncken, O. (2016). Scaling the sandbox—Mechanical (dis) similarities of granular materials and brittle rock. Journal of Geophysical Research: Solid Earth, 121(9), 6863–6879. Portico. https://doi.org/10.1002/2016jb012915

10.1002/2016JB012915

Cites

Santimano, T., Rosenau, M., & Oncken, O. (2015). Intrinsic versus extrinsic variability of analogue sand-box experiments – Insights from statistical analysis of repeated accretionary sand wedge experiments. Journal of Structural Geology, 75, 80–100. https://doi.org/10.1016/j.jsg.2015.03.008

10.1016/j.jsg.2015.03.008

Cites

Schulze, D. (2003). Time‐ and Velocity‐Dependent Properties of Powders Effecting Slip‐Stick Oscillations. Chemical Engineering &amp; Technology, 26(10), 1047–1051. Portico. https://doi.org/10.1002/ceat.200303112

10.1002/ceat.200303112

Cites

Cites

Závada, P., Kratinová, Z., Kusbach, V., & Schulmann, K. (2009). Internal fabric development in complex lava domes. Tectonophysics, 466(1–2), 101–113. https://doi.org/10.1016/j.tecto.2008.07.005

10.1016/j.tecto.2008.07.005

IsSupplementTo


Contact

Rosenau, Matthias

rosen@gfz-potsdam.de

GFZ German Research Centre for Geosciences, Potsdam, Germany


Citiation

Warsitzka, M., Závada, P., Pohlenz, A., & Rosenau, M. (2019). Ring-shear test data of quartz sand used for analogue experiments in the laboratory of the Institute of Geophysics of the Czech Academy of Science, Prague [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.1.2019.008