Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

Data for Microstructural and Micromechanical Evolution of Olivine Aggregates During Transient Creep

Wiesman, Harison S. | Breithaupt, Thomas | Wallis, David | Hansen, Lars N.

GFZ Data Services

(2024)

This dataset is supplemental to the paper Wiesman et al. (In prep) and contains data on the density of dislocations and their stress fields in olivine from laboratory experiments to examine transient creep in olivine. The data were used to characterize the microstructural evolution that occurs during transient creep in olivine. These results can be used to test and calibrate microphysical models for transient creep that will be used to describe how Earth’s mantle responds to changes in stress caused by earthquakes and as melting glaciers. Data are provided in a zip folder and include: • Mechanical data from each experiment: ten .txt files of raw data, ten .txt files of processed data • Measurements of lattice orientation via EBSD: ten .ctf files of large area EBSD maps and ten .ctf files of regions mapped with HR-EBSD • Densities of geometrically necessary dislocations from the HR-EBSD analysis – ten .txt files of processed data • Residual stress heterogeneity also determined from HR-EBSD analysis – 20 .txt files of processes data • Forescatter electron images of decorated dislocations – 49 .tiff files and 49 .png files of decorated dislocations, 44 .pngs of counted dislocations, and one .txt file documenting the counted dislocations Data types and sample numbers are also indicated in the file names. Files are organized into folders by sample. Data types and sample numbers are also indicated in the file names. A full description is available in the data description file.

Keywords


Originally assigned keywords
Olivine
Transient Creep
Aggregate Hardening
Dislocation Density
Microphysical Modeling
Deformation
Scanning Electron Microscopy SEM
Electron Backscatter Diffration EBSD
HREBSD
Rock and Mineral Physics
COMPOSITIONTEXTURE
STRAIN
STRESS

Corresponding MSL vocabulary keywords
olivine
dislocation density
strain
strain

MSL enriched keywords
minerals
silicate minerals
nesosilicates
olivine
Analyzed feature
deformation microstructure
crystal plastic microstructure
lattice dislocation
dislocation density
Measured property
strain
Measured property
strain
Inferred deformation behavior
microphysical deformation mechanism
time-dependent mechanism
Technique
imaging (2D)
forescatter electron (FSE)
crystal structure analysis
electron diffraction
electron backscatter diffraction (EBSD)

MSL enriched sub domains i

microscopy and tomography
rock and melt physics
analogue modelling of geologic processes


Source publisher

GFZ Data Services


DOI

10.5880/fidgeo.2024.020


Authors

Wiesman, Harison S.

0000-0003-2606-980X

University of Cambridge, Department of Earth Science, Cambridge, UK;

Breithaupt, Thomas

0000-0002-6137-022X

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wallis, David

0000-0001-9212-3734

University of Cambridge, Department of Earth Science, Cambridge, UK;

Hansen, Lars N.

0000-0001-6212-1842

University of Minnesota, Department of Earth and Environmental Sciences, Minneapolis, MN;


Contributers

Wiesman, Harison S.

ContactPerson

0000-0003-2606-980X

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wiesman, Harison S.

DataCollector

0000-0003-2606-980X

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wiesman, Harison S.

DataCurator

0000-0003-2606-980X

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wiesman, Harison S.

Editor

0000-0003-2606-980X

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wiesman, Harison S.

ProjectLeader

0000-0003-2606-980X

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wiesman, Harison S.

ProjectManager

0000-0003-2606-980X

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wiesman, Harison S.

ProjectMember

0000-0003-2606-980X

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wiesman, Harison S.

Researcher

0000-0003-2606-980X

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wiesman, Harison S.

ResearchGroup

0000-0003-2606-980X

University of Cambridge, Department of Earth Science, Cambridge, UK;

Breithaupt, Thomas

Editor

0000-0002-6137-022X

University of Cambridge, Department of Earth Science, Cambridge, UK;

Breithaupt, Thomas

ProjectMember

0000-0002-6137-022X

University of Cambridge, Department of Earth Science, Cambridge, UK;

Breithaupt, Thomas

Researcher

0000-0002-6137-022X

University of Cambridge, Department of Earth Science, Cambridge, UK;

Breithaupt, Thomas

ResearchGroup

0000-0002-6137-022X

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wallis, David

ContactPerson

0000-0001-9212-3734

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wallis, David

Editor

0000-0001-9212-3734

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wallis, David

ProjectLeader

0000-0001-9212-3734

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wallis, David

ProjectMember

0000-0001-9212-3734

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wallis, David

Researcher

0000-0001-9212-3734

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wallis, David

ResearchGroup

0000-0001-9212-3734

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wallis, David

Supervisor

0000-0001-9212-3734

University of Cambridge, Department of Earth Science, Cambridge, UK;

Hansen, Lars N.

Editor

0000-0001-6212-1842

University of Minnesota, Department of Earth and Environmental Sciences, Minneapolis, MN;

Hansen, Lars N.

ProjectMember

0000-0001-6212-1842

University of Minnesota, Department of Earth and Environmental Sciences, Minneapolis, MN;

Hansen, Lars N.

Researcher

0000-0001-6212-1842

University of Minnesota, Department of Earth and Environmental Sciences, Minneapolis, MN;

Hansen, Lars N.

Supervisor

0000-0001-6212-1842

University of Minnesota, Department of Earth and Environmental Sciences, Minneapolis, MN;

Wiesman, Harison S.

ContactPerson

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wallis, David

ContactPerson

University of Cambridge, Department of Earth Science, Cambridge, UK;


References

DOI of paper when available

IsSupplementTo

Abramson, E. H., Brown, J. M., Slutsky, L. J., & Zaug, J. (1997). The elastic constants of San Carlos olivine to 17 GPa. Journal of Geophysical Research: Solid Earth, 102(B6), 12253–12263. Portico. https://doi.org/10.1029/97jb00682

10.1029/97jb00682

Cites

Britton, T. B., & Wilkinson, A. J. (2011). Measurement of residual elastic strain and lattice rotations with high resolution electron backscatter diffraction. Ultramicroscopy, 111(8), 1395–1404. https://doi.org/10.1016/j.ultramic.2011.05.007

10.1016/j.ultramic.2011.05.007

Cites

Britton, T. B., & Wilkinson, A. J. (2012). High resolution electron backscatter diffraction measurements of elastic strain variations in the presence of larger lattice rotations. Ultramicroscopy, 114, 82–95. https://doi.org/10.1016/j.ultramic.2012.01.004

10.1016/j.ultramic.2012.01.004

Cites

Hansen, L. N., Zimmerman, M. E., & Kohlstedt, D. L. (2012). The influence of microstructure on deformation of olivine in the grain‐boundary sliding regime. Journal of Geophysical Research: Solid Earth, 117(B9). Portico. https://doi.org/10.1029/2012jb009305

10.1029/2012JB009305

Cites

Jiang, J., Britton, T. B., & Wilkinson, A. J. (2013). Mapping type III intragranular residual stress distributions in deformed copper polycrystals. Acta Materialia, 61(15), 5895–5904. https://doi.org/10.1016/j.actamat.2013.06.038

10.1016/j.actamat.2013.06.038

Cites

Mikami, Y., Oda, K., Kamaya, M., & Mochizuki, M. (2015). Effect of reference point selection on microscopic stress measurement using EBSD. Materials Science and Engineering: A, 647, 256–264. https://doi.org/10.1016/j.msea.2015.09.004

10.1016/j.msea.2015.09.004

Cites

Paterson, M. S., & Olgaard, D. L. (2000). Rock deformation tests to large shear strains in torsion. Journal of Structural Geology, 22(9), 1341–1358. https://doi.org/10.1016/s0191-8141(00)00042-0

10.1016/S0191-8141(00)00042-0

Cites

Underwood, E. E. (1973). Quantitative Stereology for Microstructural Analysis. Microstructural Analysis, 35–66. https://doi.org/10.1007/978-1-4615-8693-7_3

10.1007/978-1-4615-8693-7_3

Cites

Wallis, D., Hansen, L. N., Ben Britton, T., & Wilkinson, A. J. (2016). Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction. Ultramicroscopy, 168, 34–45. https://doi.org/10.1016/j.ultramic.2016.06.002

10.1016/j.ultramic.2016.06.002

Cites

Wallis, D., Hansen, L. N., Britton, T. B., & Wilkinson, A. J. (2017). Dislocation Interactions in Olivine Revealed by HR‐EBSD. Journal of Geophysical Research: Solid Earth, 122(10), 7659–7678. Portico. https://doi.org/10.1002/2017jb014513

10.1002/2017jb014513

Cites

Wallis, D., Hansen, L. N., Britton, T. B., & Wilkinson, A. J. (2019). High‐Angular Resolution Electron Backscatter Diffraction as a New Tool for Mapping Lattice Distortion in Geological Minerals. Journal of Geophysical Research: Solid Earth, 124(7), 6337–6358. Portico. https://doi.org/10.1029/2019jb017867

10.1029/2019JB017867

Cites

Wiesman, H. S., Zimmerman, M. E., & Kohlstedt, D. L. (2023). The Effect of Secondary‐Phase Fraction on the Deformation of Olivine + Ferropericlase Aggregates: 2. Mechanical Behavior. Journal of Geophysical Research: Solid Earth, 128(4). Portico. https://doi.org/10.1029/2022jb025724

10.1029/2022JB025724

Cites


Contact

Wallis, David

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wallis, David

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wallis, David

University of Cambridge, Department of Earth Science, Cambridge, UK;

Wallis, David

University of Cambridge, Department of Earth Science, Cambridge, UK;


Citiation

Wiesman, H. S., Breithaupt, T., Wallis, D., & Hansen, L. N. (2024). Data for Microstructural and Micromechanical Evolution of Olivine Aggregates During Transient Creep [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2024.020