Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.
Data Publication
Data for Microstructural and Micromechanical Evolution of Olivine Aggregates During Transient Creep
Wiesman, Harison S. | Breithaupt, Thomas | Wallis, David | Hansen, Lars N.
GFZ Data Services
(2024)
This dataset is supplemental to the paper Wiesman et al. (In prep) and contains data on the density of dislocations and their stress fields in olivine from laboratory experiments to examine transient creep in olivine. The data were used to characterize the microstructural evolution that occurs during transient creep in olivine. These results can be used to test and calibrate microphysical models for transient creep that will be used to describe how Earth’s mantle responds to changes in stress caused by earthquakes and as melting glaciers. Data are provided in a zip folder and include: • Mechanical data from each experiment: ten .txt files of raw data, ten .txt files of processed data • Measurements of lattice orientation via EBSD: ten .ctf files of large area EBSD maps and ten .ctf files of regions mapped with HR-EBSD • Densities of geometrically necessary dislocations from the HR-EBSD analysis – ten .txt files of processed data • Residual stress heterogeneity also determined from HR-EBSD analysis – 20 .txt files of processes data • Forescatter electron images of decorated dislocations – 49 .tiff files and 49 .png files of decorated dislocations, 44 .pngs of counted dislocations, and one .txt file documenting the counted dislocations Data types and sample numbers are also indicated in the file names. Files are organized into folders by sample. Data types and sample numbers are also indicated in the file names. A full description is available in the data description file.
Keywords
Originally assigned keywords
Corresponding MSL vocabulary keywords
MSL enriched keywords
MSL enriched sub domains i
Source publisher
GFZ Data Services
DOI
10.5880/fidgeo.2024.020
Authors
Wiesman, Harison S.
0000-0003-2606-980X
University of Cambridge, Department of Earth Science, Cambridge, UK;
Breithaupt, Thomas
0000-0002-6137-022X
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wallis, David
0000-0001-9212-3734
University of Cambridge, Department of Earth Science, Cambridge, UK;
Hansen, Lars N.
0000-0001-6212-1842
University of Minnesota, Department of Earth and Environmental Sciences, Minneapolis, MN;
Contributers
Wiesman, Harison S.
ContactPerson
0000-0003-2606-980X
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wiesman, Harison S.
DataCollector
0000-0003-2606-980X
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wiesman, Harison S.
DataCurator
0000-0003-2606-980X
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wiesman, Harison S.
Editor
0000-0003-2606-980X
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wiesman, Harison S.
ProjectLeader
0000-0003-2606-980X
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wiesman, Harison S.
ProjectManager
0000-0003-2606-980X
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wiesman, Harison S.
ProjectMember
0000-0003-2606-980X
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wiesman, Harison S.
Researcher
0000-0003-2606-980X
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wiesman, Harison S.
ResearchGroup
0000-0003-2606-980X
University of Cambridge, Department of Earth Science, Cambridge, UK;
Breithaupt, Thomas
Editor
0000-0002-6137-022X
University of Cambridge, Department of Earth Science, Cambridge, UK;
Breithaupt, Thomas
ProjectMember
0000-0002-6137-022X
University of Cambridge, Department of Earth Science, Cambridge, UK;
Breithaupt, Thomas
Researcher
0000-0002-6137-022X
University of Cambridge, Department of Earth Science, Cambridge, UK;
Breithaupt, Thomas
ResearchGroup
0000-0002-6137-022X
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wallis, David
ContactPerson
0000-0001-9212-3734
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wallis, David
Editor
0000-0001-9212-3734
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wallis, David
ProjectLeader
0000-0001-9212-3734
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wallis, David
ProjectMember
0000-0001-9212-3734
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wallis, David
Researcher
0000-0001-9212-3734
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wallis, David
ResearchGroup
0000-0001-9212-3734
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wallis, David
Supervisor
0000-0001-9212-3734
University of Cambridge, Department of Earth Science, Cambridge, UK;
Hansen, Lars N.
Editor
0000-0001-6212-1842
University of Minnesota, Department of Earth and Environmental Sciences, Minneapolis, MN;
Hansen, Lars N.
ProjectMember
0000-0001-6212-1842
University of Minnesota, Department of Earth and Environmental Sciences, Minneapolis, MN;
Hansen, Lars N.
Researcher
0000-0001-6212-1842
University of Minnesota, Department of Earth and Environmental Sciences, Minneapolis, MN;
Hansen, Lars N.
Supervisor
0000-0001-6212-1842
University of Minnesota, Department of Earth and Environmental Sciences, Minneapolis, MN;
Wiesman, Harison S.
ContactPerson
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wallis, David
ContactPerson
University of Cambridge, Department of Earth Science, Cambridge, UK;
References
DOI of paper when available
IsSupplementTo
Abramson, E. H., Brown, J. M., Slutsky, L. J., & Zaug, J. (1997). The elastic constants of San Carlos olivine to 17 GPa. Journal of Geophysical Research: Solid Earth, 102(B6), 12253–12263. Portico. https://doi.org/10.1029/97jb00682
10.1029/97jb00682
Cites
Britton, T. B., & Wilkinson, A. J. (2011). Measurement of residual elastic strain and lattice rotations with high resolution electron backscatter diffraction. Ultramicroscopy, 111(8), 1395–1404. https://doi.org/10.1016/j.ultramic.2011.05.007
10.1016/j.ultramic.2011.05.007
Cites
Britton, T. B., & Wilkinson, A. J. (2012). High resolution electron backscatter diffraction measurements of elastic strain variations in the presence of larger lattice rotations. Ultramicroscopy, 114, 82–95. https://doi.org/10.1016/j.ultramic.2012.01.004
10.1016/j.ultramic.2012.01.004
Cites
Hansen, L. N., Zimmerman, M. E., & Kohlstedt, D. L. (2012). The influence of microstructure on deformation of olivine in the grain‐boundary sliding regime. Journal of Geophysical Research: Solid Earth, 117(B9). Portico. https://doi.org/10.1029/2012jb009305
10.1029/2012JB009305
Cites
Jiang, J., Britton, T. B., & Wilkinson, A. J. (2013). Mapping type III intragranular residual stress distributions in deformed copper polycrystals. Acta Materialia, 61(15), 5895–5904. https://doi.org/10.1016/j.actamat.2013.06.038
10.1016/j.actamat.2013.06.038
Cites
Mikami, Y., Oda, K., Kamaya, M., & Mochizuki, M. (2015). Effect of reference point selection on microscopic stress measurement using EBSD. Materials Science and Engineering: A, 647, 256–264. https://doi.org/10.1016/j.msea.2015.09.004
10.1016/j.msea.2015.09.004
Cites
Paterson, M. S., & Olgaard, D. L. (2000). Rock deformation tests to large shear strains in torsion. Journal of Structural Geology, 22(9), 1341–1358. https://doi.org/10.1016/s0191-8141(00)00042-0
10.1016/S0191-8141(00)00042-0
Cites
Underwood, E. E. (1973). Quantitative Stereology for Microstructural Analysis. Microstructural Analysis, 35–66. https://doi.org/10.1007/978-1-4615-8693-7_3
10.1007/978-1-4615-8693-7_3
Cites
Wallis, D., Hansen, L. N., Ben Britton, T., & Wilkinson, A. J. (2016). Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction. Ultramicroscopy, 168, 34–45. https://doi.org/10.1016/j.ultramic.2016.06.002
10.1016/j.ultramic.2016.06.002
Cites
Wallis, D., Hansen, L. N., Britton, T. B., & Wilkinson, A. J. (2017). Dislocation Interactions in Olivine Revealed by HR‐EBSD. Journal of Geophysical Research: Solid Earth, 122(10), 7659–7678. Portico. https://doi.org/10.1002/2017jb014513
10.1002/2017jb014513
Cites
Wallis, D., Hansen, L. N., Britton, T. B., & Wilkinson, A. J. (2019). High‐Angular Resolution Electron Backscatter Diffraction as a New Tool for Mapping Lattice Distortion in Geological Minerals. Journal of Geophysical Research: Solid Earth, 124(7), 6337–6358. Portico. https://doi.org/10.1029/2019jb017867
10.1029/2019JB017867
Cites
Wiesman, H. S., Zimmerman, M. E., & Kohlstedt, D. L. (2023). The Effect of Secondary‐Phase Fraction on the Deformation of Olivine + Ferropericlase Aggregates: 2. Mechanical Behavior. Journal of Geophysical Research: Solid Earth, 128(4). Portico. https://doi.org/10.1029/2022jb025724
10.1029/2022JB025724
Cites
Contact
Wallis, David
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wallis, David
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wallis, David
University of Cambridge, Department of Earth Science, Cambridge, UK;
Wallis, David
University of Cambridge, Department of Earth Science, Cambridge, UK;
Citiation
Wiesman, H. S., Breithaupt, T., Wallis, D., & Hansen, L. N. (2024). Data for Microstructural and Micromechanical Evolution of Olivine Aggregates During Transient Creep [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2024.020