Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

Microstructural data used in “Drill core from seismically active sandstone gas reservoir yields clues to internal deformation mechanisms

Verberne, Berend Antonie | Hangx, Suzanne J.T. | Pijnenburg, Ronald P.J. | Hamers, Maartje F. | Drury, Martyn R. | Spiers, Christopher J.

YoDa Data Repository, Utrecht University, Netherlands

(2022)

Europe’s largest gas field, the Groningen field (the Netherlands), is widely known for induced subsidence and seismicity caused by gas pressure depletion and associated compaction of the sandstone reservoir. Whether compaction is elastic or partly inelastic, as implied by recent experiments, is a key factor in forecasting system behavior and seismic hazard. We sought evidence for inelastic deformation through comparative microstructural analysis of unique drill core recovered from the seismogenic center of the field in 2015, 50 yr after gas production started, versus core recovered before production (1965). Microstructural data were collected from: i) a suite of 1965 and 2015 core samples, and ii) a lab-deformed sample from the 1965 core and of its virgin counterpart sample. The data include section-scale, back-scattered electron (BSE) image mosaics, phase maps prepared using electron dispersive X-ray (EDX) mapping, electron backscatter diffraction (EBSD) maps, and cathodoluminescence (CL) micrographs. Further, we include maps of intragranular crack distributions in the form of manually drawn overlays to BSE mosaics. Crack map data are stored either as shapefiles (.shp) (used in ESRI ArcGIS) or as zip-files (.zip) comprising crack polygon (.roi) overlays (used in ImageJ – Schindelin et al., 2012). The data is provided in 1 zip-file (Data_Verberne_et_al_2020.zip). Detailed information about the files in these zip-file and how the data are processed is described in the research paper (https://doi.org/10.1130/G48243.1), plus accompanying supplementary material, and an additional explanation file, which are also all included in this data publication. Contact person is Suzanne Hangx – s.j.t.hangx@uu.nl. The work was funded by the Dutch Oil Company (Nederlandse Aardolie Maatschappij BV, NAM).

Keywords


Originally assigned keywords
Natural Sciences Earth and related environmental sciences 15
Groningen gas field
induced seismicity
earthquake
Slochteren sandstone
deformation mechanism
subsidence
compaction
electron microscopy
scanning electron microscope SEM
sample preperation
coating
platinumpalladium
imaging 2D
cathodoluminescence CL imaging
panchromatic CL image
backscatter electron BSE imaging
chemical and mineralogical analysis
Energy Dispersive XRay spectroscopy
EDX in 2D
crystal structure analysis
electron diffraction
electron backscatter diffraction EBSD
deformation microstructure
brittle
intragranular
intragranular crack
intragranular crack distribution
intragranular crack orientation
mass transport
pressure solution
intergranular
grain boundary cement
pore filling pore clogging
mineralogy and composition
compositional mapping
mineral map
phase map
microchemical map
grain size and configuration
crystallographic preferred orientation CPO
sedimentary rock
sandstone
wacke
Rotliegend sandstone
quartz
feldspar
clay
kaolinite
illite
drill core
smectite
microphysics
Stedum
Zeerijp
Phanerozoic
Paleozoic
Permian
Cisuralian
human subsurface use
gas field
EPOSNL
multiscale laboratories
EPOS
microscopy and tomography

Corresponding MSL vocabulary keywords
Induced seismicity
induced seismicity
Slochteren sandstone
microphysical deformation mechanism
surface subsidence
surface subsidence
strain
strain
electron microscopy
scanning electron microscope (SEM)
imaging (2D)
cathodoluminescence (CL) imaging
panchromatic CL image
backscatter electron (BSE) imaging
chemical and mineralogical analysis
energy dispersive x-ray spectroscopy (EDS EDX)
EDS in 2D
crystal structure analysis
electron diffraction
electron backscatter diffraction (EBSD)
deformation microstructure
intragranular cracking
intragranular crack
intragranular crack distribution
intragranular crack orientation
rate of pressure solution
pressure solution
overgrowths
mineralogy and composition
quantitative mineralogy
mineral map
phase map
microchemical map
grain size and configuration
crystallographic preferred orientation (CPO)
sedimentary rock
sandstone
wacke
quartz
clay
clay
clay - kaolinite
kaolinite
illite
drill core
clay - smectite
Phanerozoic
Paleozoic
Permian
Cisuralian
antropogenic setting
gas field
gas field

MSL enriched keywords
antropogenic setting
Induced seismicity
induced seismicity
sedimentary rock
sandstone
wacke
Slochteren sandstone
Inferred deformation behavior
microphysical deformation mechanism
surface subsidence
surface subsidence
Measured property
strain
Measured property
strain
Apparatus
electron microscopy
scanning electron microscope (SEM)
Technique
imaging (2D)
cathodoluminescence (CL) imaging
panchromatic CL image
backscatter electron (BSE) imaging
chemical and mineralogical analysis
energy dispersive x-ray spectroscopy (EDS EDX)
EDS in 2D
crystal structure analysis
electron diffraction
electron backscatter diffraction (EBSD)
Analyzed feature
deformation microstructure
intragranular cracking
brittle microstructure
intragranular crack
intragranular crack distribution
intragranular crack orientation
coupled mechanical-chemical effects
rate of pressure solution
time-dependent mechanism
pressure solution
pressure solution microstructure
overgrowths
mineralogy and composition
quantitative mineralogy
mineral map
phase map
microchemical map
grain size and configuration
crystallographic preferred orientation (CPO)
minerals
silicate minerals
tectosilicates
quartz
phyllosilicates
clay
unconsolidated sediment
clastic sediment
clay
clay - kaolinite
kaolinite
illite
Equipment
borehole drilling
drill core
clay - smectite
Phanerozoic
Paleozoic
Permian
Cisuralian
gas field
subsurface energy production
hydrocarbon energy production
gas field
deformation behaviour
inelastic deformation
Software
ArcGIS
equipment
x-ray spectrometer
energy-dispersive x-ray spectrometer

MSL original sub domains

microscopy and tomography

MSL enriched sub domains i

microscopy and tomography
rock and melt physics
analogue modelling of geologic processes
geo-energy test beds
geochemistry


Source publisher

YoDa Data Repository, Utrecht University, Netherlands


DOI

10.24416/UU01-KEW4XN


Authors

Verberne, Berend Antonie

0000-0002-1208-6193

Shell Global Solutions;

Hangx, Suzanne J.T.

0000-0003-2253-3273

Utrecht University;

Pijnenburg, Ronald P.J.

0000-0003-0653-7565

Utrecht University;

Hamers, Maartje F.

0000-0002-4236-0296

Utrecht University;

Drury, Martyn R.

0000-0002-2246-2009

Utrecht University;

Spiers, Christopher J.

0000-0002-3436-8941

Utrecht University;


References

Verberne, B. A., Hangx, S. J. T., Pijnenburg, R. P. J., Hamers, M. F., Drury, M. R., & Spiers, C. J. (2020). Drill core from seismically active sandstone gas reservoir yields clues to internal deformation mechanisms. Geology, 49(5), 483–487. https://doi.org/10.1130/g48243.1

10.1130/G48243.1

IsSupplementTo

Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. https://doi.org/10.1109/tsmc.1979.4310076

10.1109/TSMC.1979.4310076

References

Pijnenburg, R. P. J., & Spiers, C. J. (2020). Microphysics of Inelastic Deformation in Reservoir Sandstones from the Seismogenic Center of the Groningen Gas Field. Rock Mechanics and Rock Engineering, 53(12), 5301–5328. https://doi.org/10.1007/s00603-020-02215-y

10.1007/s00603-020-02215-y

References

Pijnenburg, R. P. J., Verberne, B. A., Hangx, S. J. T., & Spiers, C. J. (2019). Inelastic Deformation of the Slochteren Sandstone: Stress‐Strain Relations and Implications for Induced Seismicity in the Groningen Gas Field. Journal of Geophysical Research: Solid Earth, 124(5), 5254–5282. Portico. https://doi.org/10.1029/2019jb017366

10.1029/2019JB017366

References

Preibisch, S., Saalfeld, S., & Tomancak, P. (2009). Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics, 25(11), 1463–1465. https://doi.org/10.1093/bioinformatics/btp184

10.1093/bioinformatics/btp184

References

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019

10.1038/nmeth.2019

References


Citiation

Verberne, B. A., Hangx, S. J. T., Pijnenburg, R. P. J., Hamers, M. F., Drury, M. R., & Spiers, C. J. (2022). Microstructural data used in “Drill core from seismically active sandstone gas reservoir yields clues to internal deformation mechanisms” (Version 1.0) [Data set]. Utrecht University. https://doi.org/10.24416/UU01-KEW4XN


Collection Period

2015-07-01 - 2018-12-31


Geo location(s)

Groningen gas field, the Netherlands