Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.
Data Publication
P³ - PetroPhysical Property Database
Bär, Kristian | Reinsch, Thomas | Bott, Judith
GFZ Data Services
(2019)
Petrophysical properties are key to populate numerical models of subsurface process simulations and for the interpretation of many geophysical exploration methods. They are characteristic for specific rock types and may vary considerably as a response to subsurface conditions (e.g. temperature and pressure). Hence, the quality of process simulations and geophysical data interpretation critically depend on the knowledge of in-situ physical properties that have been measured for a specific rock unit. Inquiries for rock property values for a specific site might become a very time-consuming challenge given that such data are (1) spread across diverse publications and compilations, (2) heterogeneous in quality and (3) continuously being acquired in different laboratories worldwide. One important quality factor for the usability of measured petrophysical properties is the availability of corresponding metadata such as the sample location, petrography, stratigraphy, or the measuring method, conditions and authorship. The open-access database presented here aims at providing easily accessible, peer-reviewed information on physical rock properties in one single compilation. As it has been developed within the scope of the EC funded project IMAGE (Integrated Methods for Advanced Geothermal Exploration, EU grant agreement No. 608553), the database mainly contains information relevant for geothermal exploration and reservoir characterization, namely hydraulic, thermophysical and mechanical properties and, in addition, electrical resistivity and magnetic susceptibility. The uniqueness of this database emerges from its coverage and metadata structure. Each measured value is complemented by the corresponding sample location, petrographic description, chronostratigraphic age and original citation. The original stratigraphic and petrographic descriptions are transferred to standardized catalogues following a hierarchical structure ensuring intercomparability for statistical analysis. In addition, information on the experimental set-up (methods) and the measurement conditions are given for quality control. Thus, rock properties can directly be related to in-situ conditions to derive specific parameters relevant for modelling the subsurface or interpreting geophysical data.
Keywords
Originally assigned keywords
MSL enriched keywords
MSL enriched sub domains i
Source publisher
GFZ Data Services
DOI
10.5880/gfz.4.8.2019.p3
Authors
Bär, Kristian
0000-0003-4039-7148
Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Schnittspahnstraße 9, 64287 Darmstadt;
Reinsch, Thomas
0000-0002-5803-9819
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Bott, Judith
0000-0002-2018-4754
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Contributers
Bär, Kristian
ProjectLeader
0000-0003-4039-7148
Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Schnittspahnstraße 9, 64287 Darmstadt;
Reinsch, Thomas
ProjectLeader
0000-0002-5803-9819
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Bott, Judith
ProjectLeader
0000-0002-2018-4754
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Strom, Alexander
DataCollector
0000-0002-4300-6635
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;
Knöll, Paul
DataCollector
0000-0003-2118-3064
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;
Mielke, Philipp
DataCollector
0000-0003-0054-5521
Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany;
Wiesner, Peter-Hans
DataCollector
Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany;
Schmid, Rebekka
DataCollector
Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany;
Krombach, Stina
DataCollector
Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany;
Freymark, Jessica
DataCollector
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;
Meeßen, Christian
DataCollector
0000-0001-8151-8722
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;
Reinosch, Eike
DataCollector
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;
Dieck, Lisa
DataCollector
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;
Lechel, Adrian
DataCollector
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;
References
ESSD-Paper
IsSupplementTo
Bär, K., Mielke, P., & Knorz, K. (2019). <i>Petrographic Classification Table for the PetroPhysical Property Database P³</i> (Version 1.0) [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.8.2019.P3.P
10.5880/GFZ.4.8.2019.P3.p
HasPart
Bär, K., & Mielke, P. (2019). <i>Stratigraphic Classification Table for the PetroPhysical Property Database P³</i> (Version 1.0) [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.8.2019.P3.S
10.5880/GFZ.4.8.2019.P3.s
HasPart
Abdulagatova, Z., Abdulagatov, I. M., & Emirov, V. N. (2009). Effect of temperature and pressure on the thermal conductivity of sandstone. International Journal of Rock Mechanics and Mining Sciences, 46(6), 1055–1071. https://doi.org/10.1016/j.ijrmms.2009.04.011
10.1016/j.ijrmms.2009.04.011
Cites
Cites
Lachenbruch, A. H. (1968). Preliminary geothermal model of the Sierra Nevada. Journal of Geophysical Research, 73(22), 6977–6989. https://doi.org/10.1029/jb073i022p06977
10.1029/JB073i022p06977
Cites
Esteban, L., Pimienta, L., Sarout, J., Piane, C. D., Haffen, S., Geraud, Y., & Timms, N. E. (2015). Study cases of thermal conductivity prediction from P-wave velocity and porosity. Geothermics, 53, 255–269. https://doi.org/10.1016/j.geothermics.2014.06.003
10.1016/j.geothermics.2014.06.003
Cites
Fuchs, S., Schütz, F., Förster, H.-J., & Förster, A. (2013). Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks: Correction charts and new conversion equations. Geothermics, 47, 40–52. https://doi.org/10.1016/j.geothermics.2013.02.002
10.1016/j.geothermics.2013.02.002
Cites
Hartmann, A., Rath, V., & Clauser, C. (2005). Thermal conductivity from core and well log data. International Journal of Rock Mechanics and Mining Sciences, 42(7–8), 1042–1055. https://doi.org/10.1016/j.ijrmms.2005.05.015
10.1016/j.ijrmms.2005.05.015
Cites
Pimienta, L., Sarout, J., Esteban, L., & Piane, C. D. (2014). Prediction of rocks thermal conductivity from elastic wave velocities, mineralogy and microstructure. Geophysical Journal International, 197(2), 860–874. https://doi.org/10.1093/gji/ggu034
10.1093/gji/ggu034
Cites
Cites
Vilà, M., Fernández, M., & Jiménez-Munt, I. (2010). Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics, 490(3–4), 152–164. https://doi.org/10.1016/j.tecto.2010.05.003
10.1016/j.tecto.2010.05.003
Cites
Adelinet, M., Fortin, J., Schubnel, A., & Guéguen, Y. (2013). Deformation modes in an Icelandic basalt: From brittle failure to localized deformation bands. Journal of Volcanology and Geothermal Research, 255, 15–25. https://doi.org/10.1016/j.jvolgeores.2013.01.011
10.1016/j.jvolgeores.2013.01.011
Compiles
Alam, M. M., Fabricius, I. L., & Prasad, M. (2011). Permeability prediction in chalks. AAPG Bulletin, 95(11), 1991–2014. https://doi.org/10.1306/03011110172
10.1306/03011110172
Compiles
Altherr, R., Holl, A., Hegner, E., Langer, C., & Kreuzer, H. (2000). High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1–3), 51–73. https://doi.org/10.1016/s0024-4937(99)00052-3
10.1016/S0024-4937(99)00052-3
Compiles
Compiles
Ashwal, L. D., Morgan, P., Kelley, S. A., & Percival, J. A. (1987). Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements. Earth and Planetary Science Letters, 85(4), 439–450. https://doi.org/10.1016/0012-821x(87)90139-7
10.1016/0012-821X(87)90139-7
Compiles
Compiles
Atal, B. S., Bhalla, N. S., Lall, Y., Mahadevan, T. M., & Udas, G. R. (1978). Padioactive Elemental Distribution in the Granjlite Terrains and Dearwar Schist Belis of Peninsular India. Archaean Geochemistry, 205–220. https://doi.org/10.1016/s0166-2635(08)70099-9
10.1016/S0166-2635(08)70099-9
Compiles
Citiation
Bär, K., Reinsch, T., & Bott, J. (2019). P³ - PetroPhysical Property Database (Version 1.0) [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.8.2019.P3
Geo location(s)
Rock Samples from World-Wide