Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

P³ - PetroPhysical Property Database

Bär, Kristian | Reinsch, Thomas | Bott, Judith

GFZ Data Services

(2019)

Petrophysical properties are key to populate numerical models of subsurface process simulations and for the interpretation of many geophysical exploration methods. They are characteristic for specific rock types and may vary considerably as a response to subsurface conditions (e.g. temperature and pressure). Hence, the quality of process simulations and geophysical data interpretation critically depend on the knowledge of in-situ physical properties that have been measured for a specific rock unit. Inquiries for rock property values for a specific site might become a very time-consuming challenge given that such data are (1) spread across diverse publications and compilations, (2) heterogeneous in quality and (3) continuously being acquired in different laboratories worldwide. One important quality factor for the usability of measured petrophysical properties is the availability of corresponding metadata such as the sample location, petrography, stratigraphy, or the measuring method, conditions and authorship. The open-access database presented here aims at providing easily accessible, peer-reviewed information on physical rock properties in one single compilation. As it has been developed within the scope of the EC funded project IMAGE (Integrated Methods for Advanced Geothermal Exploration, EU grant agreement No. 608553), the database mainly contains information relevant for geothermal exploration and reservoir characterization, namely hydraulic, thermophysical and mechanical properties and, in addition, electrical resistivity and magnetic susceptibility. The uniqueness of this database emerges from its coverage and metadata structure. Each measured value is complemented by the corresponding sample location, petrographic description, chronostratigraphic age and original citation. The original stratigraphic and petrographic descriptions are transferred to standardized catalogues following a hierarchical structure ensuring intercomparability for statistical analysis. In addition, information on the experimental set-up (methods) and the measurement conditions are given for quality control. Thus, rock properties can directly be related to in-situ conditions to derive specific parameters relevant for modelling the subsurface or interpreting geophysical data.

Keywords


Originally assigned keywords
Petrophysical Properties
Geothermal Exploration
Database
Rock properties
ROCKSMINERALSCRYSTALS
DATA DISCOVERY
DATA SEARCH AND RETRIEVAL
DATA DELIVERY

MSL enriched keywords
Measured property
electrical properties
electrical resistivity
antropogenic setting
geothermal energy field
Measured property
magnetic susceptibility
subsurface energy production
geothermal energy extraction

MSL enriched sub domains i

rock and melt physics
paleomagnetism


Source publisher

GFZ Data Services


DOI

10.5880/gfz.4.8.2019.p3


Authors

Bär, Kristian

0000-0003-4039-7148

Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Schnittspahnstraße 9, 64287 Darmstadt;

Reinsch, Thomas

0000-0002-5803-9819

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Bott, Judith

0000-0002-2018-4754

GFZ German Research Centre for Geosciences, Potsdam, Germany;


Contributers

Bär, Kristian

ProjectLeader

0000-0003-4039-7148

Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Schnittspahnstraße 9, 64287 Darmstadt;

Reinsch, Thomas

ProjectLeader

0000-0002-5803-9819

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Bott, Judith

ProjectLeader

0000-0002-2018-4754

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Strom, Alexander

DataCollector

0000-0002-4300-6635

GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;

Knöll, Paul

DataCollector

0000-0003-2118-3064

GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;

Mielke, Philipp

DataCollector

0000-0003-0054-5521

Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany;

Wiesner, Peter-Hans

DataCollector

Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany;

Schmid, Rebekka

DataCollector

Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany;

Krombach, Stina

DataCollector

Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany;

Freymark, Jessica

DataCollector

GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;

Meeßen, Christian

DataCollector

0000-0001-8151-8722

GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;

Reinosch, Eike

DataCollector

GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;

Dieck, Lisa

DataCollector

GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;

Lechel, Adrian

DataCollector

GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;


References

ESSD-Paper

IsSupplementTo

Bär, K., Mielke, P., &amp; Knorz, K. (2019). <i>Petrographic Classification Table for the PetroPhysical Property Database P³</i> (Version 1.0) [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.8.2019.P3.P

10.5880/GFZ.4.8.2019.P3.p

HasPart

Bär, K., &amp; Mielke, P. (2019). <i>Stratigraphic Classification Table for the PetroPhysical Property Database P³</i> (Version 1.0) [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.8.2019.P3.S

10.5880/GFZ.4.8.2019.P3.s

HasPart

Abdulagatova, Z., Abdulagatov, I. M., & Emirov, V. N. (2009). Effect of temperature and pressure on the thermal conductivity of sandstone. International Journal of Rock Mechanics and Mining Sciences, 46(6), 1055–1071. https://doi.org/10.1016/j.ijrmms.2009.04.011

10.1016/j.ijrmms.2009.04.011

Cites

Cites

Lachenbruch, A. H. (1968). Preliminary geothermal model of the Sierra Nevada. Journal of Geophysical Research, 73(22), 6977–6989. https://doi.org/10.1029/jb073i022p06977

10.1029/JB073i022p06977

Cites

Esteban, L., Pimienta, L., Sarout, J., Piane, C. D., Haffen, S., Geraud, Y., & Timms, N. E. (2015). Study cases of thermal conductivity prediction from P-wave velocity and porosity. Geothermics, 53, 255–269. https://doi.org/10.1016/j.geothermics.2014.06.003

10.1016/j.geothermics.2014.06.003

Cites

Fuchs, S., Schütz, F., Förster, H.-J., & Förster, A. (2013). Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks: Correction charts and new conversion equations. Geothermics, 47, 40–52. https://doi.org/10.1016/j.geothermics.2013.02.002

10.1016/j.geothermics.2013.02.002

Cites

Hartmann, A., Rath, V., & Clauser, C. (2005). Thermal conductivity from core and well log data. International Journal of Rock Mechanics and Mining Sciences, 42(7–8), 1042–1055. https://doi.org/10.1016/j.ijrmms.2005.05.015

10.1016/j.ijrmms.2005.05.015

Cites

Pimienta, L., Sarout, J., Esteban, L., & Piane, C. D. (2014). Prediction of rocks thermal conductivity from elastic wave velocities, mineralogy and microstructure. Geophysical Journal International, 197(2), 860–874. https://doi.org/10.1093/gji/ggu034

10.1093/gji/ggu034

Cites

Cites

Vilà, M., Fernández, M., & Jiménez-Munt, I. (2010). Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics, 490(3–4), 152–164. https://doi.org/10.1016/j.tecto.2010.05.003

10.1016/j.tecto.2010.05.003

Cites

Adelinet, M., Fortin, J., Schubnel, A., & Guéguen, Y. (2013). Deformation modes in an Icelandic basalt: From brittle failure to localized deformation bands. Journal of Volcanology and Geothermal Research, 255, 15–25. https://doi.org/10.1016/j.jvolgeores.2013.01.011

10.1016/j.jvolgeores.2013.01.011

Compiles

Alam, M. M., Fabricius, I. L., & Prasad, M. (2011). Permeability prediction in chalks. AAPG Bulletin, 95(11), 1991–2014. https://doi.org/10.1306/03011110172

10.1306/03011110172

Compiles

Altherr, R., Holl, A., Hegner, E., Langer, C., & Kreuzer, H. (2000). High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1–3), 51–73. https://doi.org/10.1016/s0024-4937(99)00052-3

10.1016/S0024-4937(99)00052-3

Compiles

Compiles

Ashwal, L. D., Morgan, P., Kelley, S. A., & Percival, J. A. (1987). Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements. Earth and Planetary Science Letters, 85(4), 439–450. https://doi.org/10.1016/0012-821x(87)90139-7

10.1016/0012-821X(87)90139-7

Compiles

Compiles

Atal, B. S., Bhalla, N. S., Lall, Y., Mahadevan, T. M., & Udas, G. R. (1978). Padioactive Elemental Distribution in the Granjlite Terrains and Dearwar Schist Belis of Peninsular India. Archaean Geochemistry, 205–220. https://doi.org/10.1016/s0166-2635(08)70099-9

10.1016/S0166-2635(08)70099-9

Compiles


Citiation

Bär, K., Reinsch, T., & Bott, J. (2019). P³ - PetroPhysical Property Database (Version 1.0) [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.8.2019.P3


Geo location(s)

Rock Samples from World-Wide